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Abstract

In this paper, we present a systematic procedure for robust adaptive control design for minimum phase
uncertain square multiple-input multiple-output (MIMO) linear time-invariant (LTI) systems that admit
uniform vector relative degree of zero, under the assumption that the upper bounds for the observability
indices of all measurement channels are known. For square MIMO LTI systems, it is always possible to
pad dummy state variables to arrive at a system model that admits uniform vector relative degree of zero,
which is further minimum phase and has the observability indices the same as the known upper bounds.
We assume that the system with such padded dummy state variables admits the strict observer canonical
form. We also assume that the unknown parameter vector lies in a convex compact set such that the
high frequency gain matrix remains invertible for any parameter vector value in the set. These are the
assumptions that allow for a successful design of a robust adaptive controller. A numerical example is
included to fully illustrate the controller design and the effectiveness of the controller. As compared with
the recent paper Pan and Başar (2023), the problem with uniform vector relative degree of zero allows
us to relieve the block diagonally identical backbone structure for the measurement channels and choose
a general quadratic cost structure that weighs the tracking errors arbitrarily.

Keywords: nonlinear H∞ control based robust adaptive control; multiple-input multiple-output linear
uncertain systems; minimum phase; extended zero dynamics canonical form; strict observer canonical form.

1 INTRODUCTION

Robust adaptive control design for uncertain linear systems has attracted a lot of research attention since
the 1980s, (Morse, 1980; Goodwin and Sin, 1984; Ioannou and Sun, 1996; Pan and Başar, 2000; Zhao et al.,
2008, 2009; Zeng and Pan, 2009; Zeng et al., 2010; Tezcan and Başar, 1999; Zeng, 2012; Pan and Başar,
2023). A satisfactory solution to single-input single-output (SISO) linear systems was obtained in Pan and
Başar (2000) using the game theoretic approach (Başar and Bernhard, 1995). See Pan and Başar (2000) for a
complete literature review of the game-theoretic approach to robust adaptive control and nonlinear adaptive
control at the onset of the millenium. There, one can further find extensive simulation results comparing the
performance of the robust adaptive control strategy with those of nonadaptive H∞-control. The solution to
the SISO problem has further been refined in Zhao et al. (2008), and generalized in follow-up works in multiple
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directions, namely zero relative degree case (Zeng et al., 2010), the three degrees of freedom problem (Zeng
and Pan, 2009), and a class of multiple-input multiple-output (MIMO) linear systems that consists of parallel
interconnected SISO linear systems with limited output feedback (Zeng, 2012). The solution methodology
has also been successfully generalized to SISO uncertain nonlinear systems in Tezcan and Başar (1999). The
design of Zhao et al. (2008) has also been studied in detail on the convergence properties of the closed-loop
system in Zhao et al. (2009). It is observed that the minimum phase assumption is the key to the success of
robust adpative control design for SISO uncertain linear systems. The generalization of the robust adaptive
control design to MIMO systems depends critically on the generalization of the minimum phase assumption
to MIMO linear systems under additive disturbances. In Pan and Başar (2018), a generalized minimum
phase assumption has been introduced for SISO systems, which is necessary for a successful design of a
model reference controller for SISO linear systems. It has been proved that for SISO systems the generalized
minimum phase condition is equivalent to all zeros of the transfer function from the control input to the
output to have negative real parts if the system is controllable from the control input and is observable from
the output (Proposition 3 of Pan and Başar (2018)). More relationships between the generalized minimum
phase assumption and its classical counterpart have been obtained in Pan and Başar (2018). This generalized
minimum phase assumption has been extended to MIMO linear systems with additive disturbances in Başar
and Pan (2020). It has been observed that the generalized minimum phase assumption is necessary for a
successful design of model reference controller for MIMO linear systems. It has also been noted in Başar
and Pan (2020) that the generalized minimum phase assumption is invariant under finite steps of dynamic
extensions (Isidori, 1995). We observe that the key canonical forms of uncertain linear systems are the
extended zero dynamics canonical form and the strict observer canonical form. In Başar and Pan (2019), we
established methodologies to extend (dynamically) a given minimum phase uncertain MIMO linear system
model to achieve an extended system that admits the extended zero dynamics canonical form and the strict
observer canonical form without rendering the system non-minimum phase. In Pan and Başar (2023), robust
adaptive control for MIMO uncertain linear systems was solved for the case where the system admits positive
uniform vector relative degree.

In this paper, we present a systematic procedure for robust adaptive control design for uncertain minimum
phase square MIMO linear systems that admit uniform vector relative degree of zero. We assume that the
MIMO linear system hasm output terminals, and a set of upper bounds n1, . . . , nm ∈ Z+ for the observability
indices (Chen, 1984) ν1, . . . , νm ∈ Z+ of the system is known. For this class of systems, it is always possible to
pad dummy state variables (Başar and Pan, 2019) to arrive at a system model that admits the observability
indices n1, . . . , nm, remains minimum phase according to Başar and Pan (2020), and admits uniform vector
relative degree of zero. We assume that this extended system admits strict observer canonical form. Thus,
this extended system admits the extended zero dynamics canonical form and the strict observer canonical
form. The assumption that the system admits the strict observer canonical form is not restrictive at all,
since when n = n1 = · · · = nm, i. e., the upper bounds for the observability indices are uniform, then
the extended system admits the strict observer canonical form (Başar and Pan, 2020). This assumption is
introduced to allow flexibility in the robust adaptive controller design. The observable part of the extended
system is then the design model for the system. The design procedure resembles that for the SISO case Zeng
et al. (2010), but we allow for the additional flexibility of some measured disturbance inputs. The general
objective of the control design is to attenuate the effect of the disturbance input on the system tracking
error. Using a game theoretic approach, we formulate the robust adaptive control problem as a nonlinear
H∞ optimal control problem with a single cost function. By making use of the cost-to-come function
methodology for affine nonlinear H∞ optimal control, we obtain a closed-form expression for an upper bound
of the value function of the identifier for the unknown system, which provides a finite-dimensional estimator
structure for the uncertain linear system. Assuming the existence of a known convex compact set for the
true values of the system parameters such that the high frequency gain matrix will remain invertible for any
parameter values in that set, we introduce a smooth parameter projection scheme for the identifier. With
this projection algorithm, the adaptive control system becomes robust with or without persistently exciting
input signals. Using the explicit form of the value function for the identifier, the nonlinear H∞ adaptive
control problem is then transformed into a full-information nonlinear robust control problem, and the control
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law is obtained by setting the estimated output to the desired reference trajectory as in Zeng et al. (2010).
Due to robustness concerns not related to the objective of the current paper, we propose an alternative proof
than that of Zeng et al. (2010), where the state of a first order filter for the difference between measurement
output and the reference trajectory was shown to be bounded. The adaptive controller achieves the desired
disturbance attenuation level for all admissible continuous exogenous input waveforms and all continuous
reference trajectories on the infinite horizon with any admissible initial conditions. Furthermore, it is proved
rigorously that the control law also leads to boundedness of all closed-loop signals under bounded admissible
initial condition, bounded admissible disturbance inputs, and bounded reference trajectory without the
need for any persistency of excitation condition or any stochastic noise assumptions. The tracking error is
proved to converge to zero when, in addition, the unmeasured disturbance input is of finite energy, while the
measured disturbance and the reference trajectory are bounded and uniformly continuous.

The balance of the paper is organized as follows. In the next section, we list the notations used in
the paper. In Section 3, we provide a precise formulation of the problem to be solved, delineate the basic
assumptions regarding the underlying system, as well as the input signals, and include a brief discussion of
the solution methodology adopted. In Section 4, we present the identification design and control design for
the nonlinear H∞ adaptive control problem, with detailed discussions on the projection algorithm used in
the construction. This identifier then becomes the system to be controlled in a worst-case sense, under an
equivalent expression for the cost function that depends only on the identifier states. The control design is
simply to set the estimated output to the desired reference trajectory (certainty equivalence). In Section 5,
we present the precise statement and complete proofs of the properties of the closed-loop adaptive system.
The theoretical results are also illustrated on a numerical example in Section 6, which clearly illustrates the
effectiveness of the design methodology. The paper ends with the concluding remarks of Section 7.

2 NOTATIONS

Let IR denote the real line; IR+ := (0,∞) ⊂ IR; IR− := (−∞, 0) ⊂ IR; IR+ := [0,∞) ⊂ IR; IRe :=
IR ∪ {−∞} ∪ {+∞}; IN be the set of natural numbers; Z+ := IN ∪ {0}; C be the set of complex numbers,
where i is the complex unit. For any number a ∈ C, a denotes its complex conjugate and Re (a ) denotes
its real part. Unless specified, all signals, constants, and matrices are real. For a continuous function f ,
we say that it belongs to C; if it is k-times continuously differentiable, we say that it belongs to Ck; its lth
order derivative is denoted by Dlf or f (l); its partial derivative with respect to some variable x is denoted
by ∂f

∂x . For a BB ( IR)-measurable function f : I → IRn, where I ⊆ IR is an interval, we say f is L̄p, where

p ∈ [1,∞) ⊂ IR, if (
∫

I |f(τ) |
p
dτ)1/p < ∞; the class of all functions g that g = f a.e. in I is denoted by

[f ] ∈ Lp; when f is continuous, we say that f is L∞ if max{supt∈I |f(t) | , 0} < ∞. We let IRn denote

the Euclidean space, with norm |z | :=
√
z′z, unless specified otherwise. For any matrix A, A′ denotes

its transpose. We will denote n× n-dimensional real symmetric, positive-semidefinite, and positive-definite
matrices by Sn, Spsdn, and S+n, respectively, and say Q1 ≤ Q2, if Q2 − Q1 ∈ Spsdn, and Q1 < Q2, if
Q2 −Q1 ∈ S+n, ∀Q1, Q2 ∈ Sn; Tr (Q1 ) denotes the trace of Q1. For any tensor A ∈ B (IRm1 ,B (IRm2 ,Y) ),
AT2,1 denotes the transpose of tensor A between the last two indices, and thus A(x)(y) = AT2,1(y)(x) ∈ Y,
∀x ∈ IRm1 , ∀y ∈ IRm2 . For any z ∈ IRn and any Q ∈ Spsdn, |z|2Q denotes z′Qz. In denotes the n × n-

dimensional identity matrix. For any matrix A, A0 = I. For any matrix M , ‖M ‖p denotes its p-induced
norm, 1 ≤ p ≤ ∞; for p = 2, we simply write it as ‖M ‖. 0m×n denotes the m × n-dimensional matrix
whose elements are all zeros. For any waveform u[0,tf ) ∈ C([0, tf), IRp), where tf ∈ (0,∞] ⊂ IRe and p ∈ Z+,
‖u[0,tf)‖∞ = supt∈[0,tf ) |u(t)|; when this quantity is bounded, we say that u[0,tf) ∈ Cb ([0, tf), IRp). For any
real (complex) Banach spaces X1 and X2, we will write B (X1,X2 ) to denote the set of all bounded linear
operators from X1 to X2, and write BX1 (x, r ) to denote the open ball centered at x with radius r ∈ IR+ in
X1. On IR, we will denote by ra,b the compact interval [a, b] ⊂ IR, where a ≤ b and a, b ∈ IR. For any sets

A,B with A ⊆ B, χA,B denote the indicator function of the set A on B, i. e., χA,B(x) :=

{

1 x ∈ A

0 x ∈ B \A ,

∀x ∈ B.
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Any signal with a hat accent (like x̂, θ̂, ξ̂) is the worst-case estimate of the corresponding signal without
the accent, which is something we design like the control signal. Any signal with a check accent (like x̌, θ̌,
w̌) is some signal we can measure, or the estimate of the corresponding signal without the accent that is
produced by the cost-to-come function analysis. Any signal with a grave accent (like x̀) is some signal that
is unknown in general and is associated with the given unknown MIMO linear system. Any signal without
any accent is a signal in the design model. Any signal with tilde accent (like x̃, θ̃, ξ̃) is the estimation error
of the signal without the accent, which equals to the signal without the accent minus the signal with the
check accent.

3 PROBLEM FORMULATION

We consider the adaptive control problem for continuous-time finite-dimensional minimum phase square
MIMO LTI systems with uniform vector relative degree of zero.

We are given system S̀ with state space representation:

˙̀x = Àx̀+ B̀u+ D̀ẁ; x̀(0) = x̀0 ∈ D̀0 (1a)

y = C̀x̀+ F̀ u+ Èẁ (1b)

where x̀ ∈ IRǹ is the state vector, ǹ ∈ Z+; x̀0 ∈ D̀0 is the initial condition, where D̀0 ⊆ IRǹ is a subspace
(we generally have D̀0 = IRǹ); u ∈ IRm is the control input, m ∈ IN; ẁ ∈ IRq̀ is the disturbance input,
q̀ ∈ Z+; y ∈ IRm is the measurement output; and the matrices À, B̀, D̀, C̀, F̀ , and È are constant matrices
of appropriate dimensions and generally unknown. It is assumed that the disturbance input is partitioned
into ẁ := (w̌, ẁb), where w̌ ∈ IRq̌ are measured disturbance inputs (in addition to the measurements y),
q̌ ∈ Z+; and the waveform of ẁ[0,∞) is assumed to belong to Ẁd (generally = C(IR+, IR

q̀)), which is of class
Bq̀ (Pan and Başar, 2018). Thus, we are only considering ẁ[0,∞) that is continuous. We now state a number
of assumptions, which are quite natural in this context.

Assumption 1 The system (1) (with control input u, output y, and disturbance input ẁ) is minimum phase
with respect to D̀0 and Ẁd as defined in Başar and Pan (2020).

Assumption 2 The system (1) admits uniform vector relative degree of zero, that is the matrix F̀ is
invertible.

Assumption 3 A set of upper bounds n1, . . . , nm ∈ Z+ for the observability indices ν1, . . . , νm ∈ Z+ of
system S̀ is known. (ν1, . . . , νm are the observability indices of the pair (À, C̀); and 0 ≤ νi ≤ ni, i = 1, . . . ,m.)

It is always possible to pad dummy state variables to the system (1) to arrive at a system that admits
the observability indices n1, . . . , nm:

˙́x = Áx́+ B́u+ D́ẁ; x́(0) = x́0 ∈ D́0 (2a)

y = Ćx́+ F̀ u+ Èẁ (2b)

where x́ ∈ IRǹ+
∑

m
i=1 ni−

∑
m
i=1 νi is the state vector; x́0 ∈ D́0 is the initial state, where D́0 := D̀0 ×

{

0∑
m
i=1 ni−

∑
m
i=1 νi

}

⊆ IRǹ+
∑m

i=1 ni−
∑m

i=1 νi is a subspace; the matrices Á, B́, D́, and Ć are constant ma-
trices of appropriate dimensions and generally unknown; and the system (2) admits uniform vector relative
degree of zero and is minimum phase with respect to D́0 and Ẁd. We will refer to the system (2) as Ś.

By Lemma 4 of Başar and Pan (2020), the system (2) admits the extended zero-dynamics canonical form:

˙́x =
¯́
Ax́+

¯́
By +

¯́
Dẁ; x́(0) = x́0 ∈ D́0 (3a)

y = Ćx́+ F̀u+ Èẁ (3b)

4



Assumption 4 The system (2) admits strict observer canonical form.

This assumption is made to allow flexibility in the robust adaptive controller design. When n1 = n2 = · · · =
nm, Assumption 4 is always true.

By Corollary 1 of Başar and Pan (2019), there exists an invertible matrix T̀ such that in (xō, x) :=
(xō, x1, . . . , xn) = T̀−1x́ coordinates, we have that xi ismi-dimensional, i = 1, . . . , n, n := max {n1, . . . , nm },
mi :=

∑m
l=1 χ{·≥i},Z(nl); m ≥ m1 ≥ m2 ≥ · · · ≥ mn ≥ 0, and mn > 0 if n > 0;

∑m
i=1 ni =

∑n
i=1 mi =: nO;

and the system (2) admits the strict observer canonical form representation

ẋō = Aōxō +Aō,1x1 +Bōu+Dōẁ (4a)

ẋi = Ai,1x1 + Ai,i+1xi+1 +Biu+ D́iẁ; i = 1, . . . , n− 1 (4b)

ẋn = An,1x1 +Bnu+ D́nẁ (4c)

y = C1x1 + F̀ u+ Èẁ (4d)

where all matrices are constant and of appropriate dimensions, C1 ∈ IRm×m1 is known, whose column vectors
are a subset of the column vectors of Im; Ai,i+1 ∈ IRmi×mi+1 is known, whose column vectors are a subset
of the column vectors of Imi

, i = 1, . . . , n− 1.
By further taking only the observable part of the system (4) and introducing a disturbance transformation

wb = M̀ẁb, where wb is qb-dimensional, qb ∈ IN, and M̀ is an unknown constant matrix, we may obtain the
following design model for the dynamics of x = (x1, . . . , xn) in (4):

ẋ = Ax+Bu+ Ďw̌ +Dwb + (A211,1y +A211,3w̌ +A212u)θ (5a)

y = Cx+B0u+ (C1,3w̌ + C1,2u)θ + Ewb (5b)

where the matrices A, B, Ď, D, C, B0, and E are known matrices of appropriate dimensions; θ ∈ Θ ⊆ IRσ is
the unknown parameter vector of the system; A211,1, A211,3, and A212, are known second-order IRnO -valued
tensors of appropriate dimensions; C1,3 and C1,2 are known second-order IRm-valued tensors of appropriate
dimensions; and further we have the pair (A,C) being observable.

Assumption 5 There exists a known smooth nonnegative proper convex function P (θ̄), such that the true
value of θ lies in the convex compact set Θ :=

{

θ̄ ∈ IRσ
∣

∣ P (θ̄) ≤ 1
}

. Furthermore, ∀θ̄ ∈ Θ, the matrix

B0 + C
T2,1

1,2 θ̄ =: Bp0(θ̄) is invertible.

Bp0(θ̄) being invertible follows from the fact that system (4) admits uniform vector relative degree of zero
from u to y.

Assumption 6 Associated with system (4), we are given an m-dimensional reference trajectory yd(t) that
y is to track. The reference trajectory yd is assumed to be continuous on the interval IR+ and is available
for feedback.

The objective of the control design is to achieve asymptotic tracking of the reference trajectory while
rejecting the uncertainty quadruple (x́0, θ, ẁ[0,∞), yd[0,∞)) ∈ D́0×Θ×Ẁd×C(IR+, IR

m) =: Ẁ , which comprises

the initial state of the system Ś, the true values of the unknown parameters, the disturbance input waveforms,
and the reference trajectories. We will obtain a class of causal robust adaptive controllers,

u(t) = µ(t, y[0,t], w̌[0,t], yd[0,t]) (6)

∀t ∈ IR+ to achieve the desired tracking and disturbance attenuation objectives (to be delineated shortly).
Let us denote the class of these causal admissible controllers by M.

The control design objective is now made precise in the following.
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Definition 1 A controller µ is said to achieve disturbance attenuation level 0 with respect to w̌ and distur-
bance attenuation level γ ∈ IR+ with respect to wb, if there exist nonnegative functions l(t, θ, x[0,t], y[0,t], w̌[0,t],

yd[0,t]) such that for all tf ≥ 0 the following dissipation inequality holds :

sup
(x́0,θ,ẁ[0,∞),yd [0,∞))∈Ẁ

Jγtf ≤ 0 (7)

where

Jγtf :=

∫ tf

0

(|Cx(τ) +B0u(τ) + (C1,2u(τ))θ + (C1,3w̌(τ))θ − yd(τ) |2Q + l(τ, θ, x[0,τ ], y[0,τ ], w̌[0,τ ], yd[0,τ ])

−γ2 |wb(τ) |2) dτ − γ2
∣

∣ (θ − θ̌0, x(0)− x̌0)
∣

∣

2

Q̄0
(8)

Here, Q ∈ S+m is the positive-definite weighting matrix for the quadratic norm of the tracking error; θ̌0 is
the initial guess of the unknown parameters; x̌0 is the initial guess of the unknown initial state x(0); and
Q̄0 ∈ S+ (σ+nO) is the positive-definite weighting matrix for the quadratic norm of the initial estimation error,

quantifying our level of confidence in the a priori estimates of θ and x(0); and Q̄−1
0 admits the structure

[

Q−1
0 Q−1

0 Φ′
0

Φ0Q
−1
0 Π0 +Φ0Q

−1
0 Φ′

0

]

, where Q0 ∈ S+ σ and Π0 ∈ S+nO
, respectively.1

Note that, in the above definition, the negative weighting on the disturbance input ẁ is through the negative
weightings on the transformed disturbance inputs wb. The motivation behind the above definition is to
guarantee that, for each time instant tf ≥ 0, the weighted squared L2 norm of the output tracking error Cx+
Bp0(θ)u+(C1,3w̌)θ−yd on [0, tf ] is bounded by γ2 times the squared L2 norm of the transformed disturbance
input wb[0,tf ] plus some constant that depends only on the initial condition of the system. When the
disturbance inputs ẁb have finite L2 norms on [0,∞), then the L2 norm of the tracking error Cx+Bp0(θ)u+
(C1,3w̌)θ − yd is also finite, which further implies that limt→∞(Cx(t) +Bp0(θ)u(t) + (C1,3w̌(t))θ − yd(t)) =
0m, under additional stability conditions of the closed-loop system. On the other hand, for nonvanishing
disturbance inputs ẁb, whose truncated squared L2 norms increase linearly with tf , the rate of increase for
an upper bound of the truncated squared L2 norm of the tracking error Cx + Bp0(θ)u + (C1,3w̌)θ − yd is
also linear, and is bounded by γ2 times the rate for the disturbance wb. Clearly, when such an objective is
achieved, the closed-loop system will be robust with respect to the disturbance ẁ, but the exact attenuation
level with respect to ẁb will in general depend on the unknown transformation matrix M̀ . Under Assumption
5, M̀ can be selected to have a known bound for its norm, which then guarantees a known bound for the
attenuation level from ẁb to the tracking error.

The problem formulated above can be brought into the framework of H∞ optimal control for affine-
quadratic nonlinear systems with imperfect state measurements. Toward that end, we expand the system
dynamics (5) by adjoining the simple dynamics of θ: θ̇ = 0σ. Let ξ denote the expanded state ξ = (θ, x),
which satisfies the following dynamics:

ξ̇ =

[

0σ×σ 0σ×nO

A211,1y +A211,3w̌ +A212u A

]

ξ +

[

0σ×m

B

]

u+

[

0σ×q̌

Ď

]

w̌ +

[

0σ×qb

D

]

wb

=: Āξ + B̄u+ ¯̌Dw̌ + D̄wb (9a)

ȳ := y −B0u =
[

C1,3w̌ + C1,2u C
]

ξ + Ewb =: C̄ξ + Ewb (9b)

The worst-case optimization of the cost function (8) can be carried out in two steps: first a maximization
over x́0, θ, and wb, given all measurements available to the controller, and then maximization over w̌, y, and
yd. The idea is that the controller can observe the underlying system only through the measurements, and
hence once the measurement waveform is fixed, the control input is an open-loop time function with respect

1At this point, Π0 is quite arbitrary. Later, to simplify the structure of the adaptive controller to be derived, we will choose

it to be the solution of an algebraic Riccati equation.
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to the underlying dynamics. This is precisely the idea that underpins the cost-to-come function methodology
(Didinsky et al., 1993), leading to the following identity for each fixed tf ∈ IR+:

sup
(x́0,θ,ẁ[0,∞),yd [0,∞))∈Ẁ

Jγtf = sup
y[0,∞)∈C,yd [0,∞)∈C,w̌[0,∞)∈C

sup
(x́0,θ,ẁ[0,∞),yd [0,∞))∈Ẁ|y[0,∞),yd [0,∞),w̌[0,∞)

Jγtf

≤ sup
y[0,∞)∈C,yd [0,∞)∈C,w̌[0,∞)∈C

sup
(x́0,θ,wb[0,∞))∈W|y[0,∞),yd [0,∞),w̌[0,∞)

Jγtf (10)

where the right-hand sup operator

sup
(x́0,θ,wb[0,∞))∈W|y[0,∞),yd [0,∞),w̌[0,∞)

is over all initial conditions x́0 ∈ IRǹ+nO−
∑m

i=1 νi , parameter value θ ∈ Θ, and disturbance waveforms
wb[0,∞) ∈ C that generate the output waveform y[0,∞) with w̌[0,∞) and yd [0,∞) fixed and known. In the
above, we have elected to be conservative that we supremize with respect to wb[0,∞), instead of ẁb[0,∞). This
is done solely for the consideration of the existence of a finite-dimensional solution for the problem.

The right-hand supremization, which will be carried out first, corresponds to the evaluation of the worst-
case performance for any set of known measurement waveforms, which renders the control input waveform
independent of the actual disturbance input waveform, since the control input is generated as a function
of the output waveform, the measured disturbance waveform, and the reference trajectory. This is the
identification design step. Because of the special structure of the problem under consideration, an upper
bound of the value function for this step of the optimization, which is related to the cost-to-come function
for this problem, can be obtained explicitly by utilizing the results of Appendix B of Pan and Başar (2000).

The left-hand supremization, which will be carried out second, corresponds to the computation of the
worst-case measurement waveform against a given control law. Since the control law is restricted to be a
causal function of the measurements and the reference trajectory, it plays a critical role in the determination
of achievability of the objective (7). This is the control design step. Both of these design steps are discussed
in Section 4.

The design function l(t, θ, x[0,t], y[0,t], w̌[0,t], yd[0,t]) is selected based on two considerations: the existence
of a solution to the problem; and the ease of analysis of stability and robustness of the resulting closed-loop
system. It is built up in the identifier design step. In the identifier design step, the weighting functions are
selected to provide necessary stability properties, and to yield a desirable structure for the identifier that is
amenable to the later control design. In particular, they are selected to maintain a predetermined positive
definite lower bound for the worst-case covariance matrix of the parameter estimates, which is necessary for
the robustness of the closed-loop system.

In the controller design step, we will simply set the control law according to the certainty equivalence
principle since the system admits uniform vector relative degree of zero. This completes the formulation of
the robust adaptive control problem and the general solution method to be adopted. We now turn to the
controller design in the next section.

4 CONTROLLER DESIGN

In this section, we first present the identification design for the adaptive control problem formulated. In
this step, the measurement waveforms y[0,∞), w̌[0,∞), yd[0,∞), and therefore the control waveform u[0,∞), are
assumed to be fixed and known. We consider the cost function:

Jiγtf =

∫ tf

0

(|Cx(τ) + (C1,3w̌(τ) + C1,2u(τ))θ +B0u(τ)− yd(τ) |2Q +
∣

∣

∣
ξ(τ) − ξ̂(τ)

∣

∣

∣

2

Q̄
− γ2 |wb(τ) |2) dτ

−γ2
∣

∣(θ − θ̌0, x(0)− x̌0)
∣

∣

2

Q̄0
(11)

where the first positive definite term is required by the objective of the adaptive control design (7); the second
nonnegative definite term is introduced for robustness considerations of the complete adaptive system, where
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ξ̂ is the worst-case estimate for the expanded state ξ, which is like a control signal yet to be determined;
the two negative-definite weighting terms involving the disturbance wb and the initial conditions are again
required by the objective of the adaptive control design (7). The nonnegative-definite weighting function Q̄

will exhibit a special structure to be delineated shortly.
To avoid singularity in estimation, we assume that

Assumption 7 The matrix E is of full row rank, or equivalently, EE′ =: N ∈ S+m.

By expressing the above cost function completely in the ξ state variables, we can apply Lemma 10 of Pan
and Başar (2000) to obtain an equivalent, more transparent, expression for Jiγtf .

Let Σ̄ and ξ̌ be defined by

˙̄Σ = (Ā− L̄N−1C̄)Σ̄ + Σ̄(Ā− L̄N−1C̄)′ +
1

γ2
D̄D̄′ − 1

γ2
L̄N−1L̄′ − Σ̄(γ2C̄′N−1C̄ − C̄′QC̄ − Q̄)Σ̄;

Σ̄(0) =
1

γ2
Q̄−1

0 =
1

γ2

[

Q−1
0 Q−1

0 Φ′
0

Φ0Q
−1
0 Π0 +Φ0Q

−1
0 Φ′

0

]

(12a)

˙̌ξ = (Ā+ Σ̄(C̄′QC̄ + Q̄))ξ̌ − Σ̄(C̄′Q(yd −B0u) + Q̄ξ̂) + B̄u+ ¯̌Dw̌ + (γ2Σ̄C̄′ + L̄)N−1(y −B0u− C̄ξ̌);

ξ̌(0) =

[

θ̌0
x̌0

]

(12b)

where L̄ := D̄E′ is given by L̄ =

[

0σ×m

L

]

with L := DE′.

Then, the cost function (11) can equivalently be written as (from Lemma 10 of Pan and Başar (2000))

Jiγtf = −
∣

∣ξ(tf )− ξ̌(tf )
∣

∣

2

(Σ̄(tf ))−1 +

∫ tf

0

(
∣

∣ C̄ξ̌(τ) − (yd(τ)−B0u(τ))
∣

∣

2

Q
− γ2

∣

∣y(τ)−B0u(τ)− C̄ξ̌(τ)
∣

∣

2

N−1

+
∣

∣

∣
ξ̌(τ) − ξ̂(τ)

∣

∣

∣

2

Q̄
− γ2

∣

∣

∣
wb(τ)− w∗(τ, ξ[0,τ ], y[0,τ ], u[0,τ ], w̌[0,τ ], yd[0,τ ], ξ̂[0,τ ])

∣

∣

∣

2

) dτ (13)

where

w∗(τ, ξ[0,τ ], y[0,τ ], u[0,τ ], w̌[0,τ ], yd[0,τ ], ξ̂[0,τ ]) = E′N−1(y(τ) −B0u(τ) − C̄ξ(τ))

+
1

γ2
(Iqb − E′N−1E)D̄′(Σ̄(τ))−1(ξ(τ) − ξ̌(τ)) (14)

Furthermore, an upper bound of the value function for this estimation step is W : S+(σ+nO) × IRσ+nO ×
IRσ+nO → IR+:

W (Σ̄, ξ, ξ̌) := |ξ − ξ̌|2Σ̄−1 (15)

whose time derivative is given by

Ẇ = −
∣

∣ C̄ξ − (yd −B0u)
∣

∣

2

Q
+
∣

∣yd −B0u− C̄ξ̌
∣

∣

2

Q
−
∣

∣

∣
ξ − ξ̂

∣

∣

∣

2

Q̄
+
∣

∣

∣
ξ̌ − ξ̂

∣

∣

∣

2

Q̄
+ γ2|wb|2

−γ2
∣

∣y −B0u− C̄ξ̌
∣

∣

2

N−1 − γ2
∣

∣

∣
wb − w∗(t, ξ[0,t], y[0,t], u[0,t], w̌[0,t], yd[0,t], ξ̂[0,t])

∣

∣

∣

2

(16)

∀Σ̄ ∈ S+(σ+nO), ∀ξ ∈ IRσ+nO , ∀ξ̌ ∈ IRσ+nO , ∀ξ̂ ∈ IRσ+nO , ∀wb ∈ IRqb , ∀w̌ ∈ IRq̌, ∀u ∈ IRm, ∀yd ∈ IRm

Partition ξ̌ := (θ̌, x̌) and ξ̂ := (θ̂, x̂) compatible with the partitioning of ξ = (θ, x). Our intention is to

keep θ̌ within a vicinity of Θ such that the matrix B0 +C
T2,1

1,2 θ̌ = Bp0(θ̌) is always invertible with a bounded
inverse, by using a smooth projection algorithm. (A straightforward nonsmooth projection function should
also work.)
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Define ρM := inf
det(B0+C

T2,1
1,2 θ̄)=0

P (θ̄). By Assumption 5, we have ρM ∈ (1,∞] ⊂ IRe. Choose ρo ∈
(1, ρM ) ⊂ IR. We will design the smooth projection algorithm such that the estimate θ̌ lies in the open set

Θo :=
{

θ̄ ∈ IRσ
∣

∣ P (θ̄) < ρo
}

. It is immediate that this implies that B0 +C
T2,1

1,2 θ̄ is invertible, ∀θ̄ ∈ Θo, and

there exists c0 ∈ IR+, such that
∥

∥(Bp0(θ̄))
−1
∥

∥ ≤ c0, ∀θ̄ ∈ Θo.
By Proposition 4 on Page 178 of Luenberger (1984), we have

∂P

∂θ
(θ̌)(θ − θ̌) ≤ P (θ)− P (θ̌) ≤ 1− P (θ̌); ∀θ̌ ∈ IRσ (17)

We now add to the right-hand side of the dynamics (12b) for ξ̌ the following term when 1 < P (θ̌) < ρo:

−
exp(− 1

P (θ̌)−1
)

(ρo − P (θ̌))3
Σ̄

[

∂P

∂θ
(θ̌) 01×nO

]′

Hence, we have

˙̌
ξ = −(1− χΘ,IRσ (θ̌))

exp(− 1
P (θ̌)−1

)

(ρo − P (θ̌))3
Σ̄

[

∂P

∂θ
(θ̌) 01×nO

]′

+ (Ā+ Σ̄(C̄′QC̄ + Q̄))ξ̌ − Σ̄(C̄′Q(yd −B0u) + Q̄ξ̂)

+B̄u+ ¯̌Dw̌ + (γ2Σ̄C̄′ + L̄)N−1(y −B0u− C̄ξ̌); ξ̌(0) =

[

θ̌0
x̌0

]

(18)

It is easy to verify that the following nonlinear functions Pr and pr

Pr(θ̌) := (1− χΘ,IRσ (θ̌))
exp(− 1

P (θ̌)−1
)

(ρo − P (θ̌))3
(
∂P

∂θ
(θ̌))′ =: pr(θ̌)(

∂P

∂θ
(θ̌))′ =

κ1(P (θ̌)− 1)

(ρo − P (θ̌))3
(
∂P

∂θ
(θ̌))′ (19)

are C∞ on the set Θo, where κ1 is as defined in Pan and Başar (2023). In view of this, the derivative of the
value function W given by (15) is equal to

Ẇ = −
∣

∣ C̄ξ − (yd −B0u)
∣

∣

2

Q
+
∣

∣yd −B0u− C̄ξ̌
∣

∣

2

Q
−
∣

∣

∣
ξ − ξ̂

∣

∣

∣

2

Q̄
+
∣

∣

∣
ξ̌ − ξ̂

∣

∣

∣

2

Q̄
+ γ2|wb|2

−γ2
∣

∣y −B0u− C̄ξ̌
∣

∣

2

N−1 − γ2
∣

∣

∣
wb − w∗(t, ξ[0,t], y[0,t], u[0,t], w̌[0,t], yd[0,t], ξ̂[0,t])

∣

∣

∣

2

+ 2(θ − θ̌)′Pr(θ̌)

∀Σ̄ ∈ S+ (σ+nO), ∀ξ ∈ IRσ+nO , ∀ξ̌ ∈ Θo × IRnO , ∀ξ̂ ∈ IRσ+nO , ∀wb ∈ IRqb , ∀w̌ ∈ IRq̌, ∀u ∈ IRm, ∀yd ∈ IRm

The last term above appears because of the modification in the dynamics of ξ̌. We now have the following
inequality: ∀θ ∈ Θ, ∀θ̌ ∈ Θo,

2(θ − θ̌)′Pr(θ̌) = 2
κ1(P (θ̌)− 1)

(ρo − P (θ̌))3
∂P

∂θ
(θ̌)(θ − θ̌) ≤ 2

κ1(P (θ̌)− 1)

(ρo − P (θ̌))3
(1− P (θ̌)) = 2pr(θ̌)(1 − P (θ̌)) ≤ 0

which shows that the last term in the expression for Ẇ is nonpositive, is zero on the set Θ, and approaches
−∞ as θ̌ approaches the boundary of the set Θo (i. e., P (θ̌) approaches ρo).

To further deduce the existence of the covariance matrix Σ̄ and the structure of the identifier, we pursue
the following line of detailed analysis. First, partition the worst-case covariance matrix Σ̄ (compatible with
the partition of ξ) as

Σ̄ =

[

Σ Σ̄12

Σ̄21 Σ̄22

]

(20)

and introduce the quantities:

Φ := Σ̄21Σ
−1 (21a)
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Π := γ2(Σ̄22 − Σ̄21Σ
−1Σ̄12) (21b)

Next, choose the following structure for the weighting matrix Q̄:

Q̄ = Σ̄−1

[

0σ×σ 0σ×nO

0nO×σ ∆

]

Σ̄−1 +

[

ǫ(C1,3w̌ + C1,2u+ CΦ)′(γ2N−1 −Q)(C1,3w̌ + C1,2u+ CΦ) 0σ×nO

0nO×σ 0nO×nO

]

where ∆ := γ−2β∆Π+γ−2∆1 with β∆ ∈ IR+ being a constant and ∆1 ∈ S+nO
being an nO×nO-dimensional

positive-definite matrix; and ǫ is a scalar function defined by

ǫ(t) :=
Tr
(

(Σ(t))−1
)

Kc
(22)

with Kc ∈ [γ2 Tr (Q0 ) ,∞) ⊂ IR being a constant corresponding to the preselected maximum level for the
quantity Tr

(

(Σ(t))−1
)

. The Riccati differential equation (RDE) for Σ̄ is expressed as

˙̄Σ = (Ā− L̄N−1C̄)Σ̄ + Σ̄(Ā− L̄N−1C̄)′ +
1

γ2
D̄D̄′ − 1

γ2
L̄N−1L̄′ − Σ̄(γ2C̄′N−1C̄ − C̄′QC̄

−
[

ǫ(C1,3w̌ + C1,2u+ CΦ)′(γ2N−1 −Q)(C1,3w̌ + C1,2u+ CΦ) 0σ×nO

0nO×σ 0nO×nO

]

)Σ̄ +

[

0σ×σ 0σ×nO

0nO×σ ∆

]

;

Σ̄(0) = γ−2

[

Q−1
0 Q−1

0 Φ′
0

Φ0Q
−1
0 Π0 +Φ0Q

−1
0 Φ′

0

]

By Lemma 6 of Pan and Başar (2000), we obtain the following differential equations for Σ, Φ, and Π:

Σ̇ = −(1− ǫ(t))Σ(C1,3w̌ + C1,2u+ CΦ)′(γ2N−1 −Q)(C1,3w̌ + C1,2u+ CΦ)Σ; Σ(0) = γ−2Q−1
0 (23a)

Φ̇ = (A− LN−1C −ΠC′(N−1 − 1

γ2
Q)C)Φ +A211,1y + (A211,3 − (LN−1 +ΠC′(N−1 − γ−2Q))C1,3)w̌

+(A212 − (LN−1 +ΠC′(N−1 − γ−2Q))C1,2)u; Φ(0) = Φ0 (23b)

Π̇ = (A− LN−1C)Π + Π(A− LN−1C)′ −ΠC′(N−1 − 1

γ2
Q)CΠ+DD′ − LN−1L′ + γ2∆; Π(0) = Π0(23c)

We note that in order to guarantee the boundedness of the matrix Σ, we can pick γ such that γ2N−1 ≥ Q.
For the RDE (23c), we note that the pairs (A,C) and (A,DD′ −LN−1L′ +∆1) are both observable. Then,
the RDE (23c) admits a unique positive-definite solution on [0,∞), and the solution converges, as t → ∞,
to the unique positive-definite solution of the corresponding algebraic Riccati equation (24) below, if (24)
admits a stabilizing positive-definite solution.

(A− LN−1C +
β∆

2
InO

)Π + Π(A− LN−1C +
β∆

2
InO

)′ −ΠC′(N−1 − 1

γ2
Q)CΠ+DD′ − LN−1L′

+∆1 = 0nO×nO
(24)

Clearly, if N−1 − γ−2Q ∈ S+m, then (24) admits a unique positive-definite stabilizing solution. We next
invoke Assumption 8 — an assumption to clarify the possible choices of γ, which is a very natural condition
to impose.

Assumption 8 The desired disturbance attenuation level γ satisfies N−1 − γ−2Q ∈ Spsdm and is such that

the algebraic Riccati equation (24) admits a stabilizing solution, that is, the matrix A− LN−1C + β∆

2 InO
−

ΠC′(N−1 − 1
γ2Q)C is Hurwitz.

Under Assumption 8, the RDE (23c) admits a positive-definite solution on the infinite horizon [0,∞). To
further simplify the controller structure and enable a proof of closed-loop robustness, we assume that Π0 = Π,
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where Π is the positive-definite solution to (24). This implies that Π(t) ≡ Π = Π0, where Π(t) is the solution
to (23c). Then, the matrix Af := A− LN−1C −ΠC′(N−1 − 1

γ2Q)C is Hurwitz.

From its definition, the function ǫ(t) can be shown to be less than or equal to 1 for any t ≥ 0. Therefore,
the covariance matrix Σ is nonincreasing. This result is summarized in the following lemma.

Lemma 1 Consider the matrix differential equation (23a) for the covariance matrix Σ. Let Assumption 8
hold. Then, the matrix Σ is uniformly upper and lower bounded as follows:

K−1
c Iσ×σ ≤ Σ(t) ≤ Σ(0) = γ−2Q−1

0

Proof Let [0, tf ] denote the maximum-length interval on which Tr((Σ(t))−1) ≤ Kc. Then, on this

interval we have: Σ̇ ≤ 0σ×σ. If tf is finite, then, we have Tr
(

(Σ(tf ))
−1
)

= Kc, and Σ̇ = 0σ×σ on the
interval [tf ,∞). This shows that tf cannot be finite. Hence, the matrix Σ is nonincreasing on [0,∞), and
this verifies the upper bound.

Since tf = ∞, we have Tr
(

(Σ(t))−1
)

≤ Kc on the interval [0,∞). Next, we observe the following
inequality:

Tr
(

(Σ(t))−1
)

≥ λmax((Σ(t))
−1) =

1

λmin(Σ(t))

where λmin(·) and λmax(·) denote, respectively, the minimum and maximum eigenvalues of a symmetric
matrix. Therefore, we have

λmin(Σ(t)) ≥ K−1
c

which yields the desired lower bound. 2

In actual implementation, it is preferred not to invert the matrix Σ on line. Computation of such an inverse
for the purpose of evaluating ǫ can in fact be avoided (see Pan and Başar (2000)). Let sΣ(t) := Tr

(

(Σ(t))−1
)

;
thus, we have ǫ(t) = K−1

c sΣ(t) and

ṡΣ = (1− ǫ)Tr
(

(C1,3w̌ + C1,2u+ CΦ)′(γ2N−1 −Q)(C1,3w̌ + C1,2u+ CΦ)
)

; sΣ(0) = γ2 Tr (Q0 )(25)

For ease of reference, we now summarize collectively the equations describing the identifier derived hereto-
fore.

(A− LN−1C +
β∆

2
InO

)Π + Π(A − LN−1C +
β∆

2
InO

)′ −ΠC′(N−1 − 1

γ2
Q)CΠ+DD′ − LN−1L′

+∆1 = 0nO×nO
(26a)

Σ̇ = −(1− ǫ(t))Σ(C1,3w̌ + C1,2u+ CΦ)′(γ2N−1 −Q)(C1,3w̌ + C1,2u+ CΦ)Σ; Σ(0) = γ−2Q−1
0 (26b)

ṡΣ = (1− ǫ)Tr
(

(C1,3w̌ + C1,2u+ CΦ)′(γ2N−1 −Q)(C1,3w̌ + C1,2u+ CΦ)
)

; sΣ(0) = γ2 Tr (Q0 ) ; (26c)

ǫ = K−1
c sΣ (26d)

Af = A− ĽC; Ľ := LN−1 +ΠC′(N−1 − γ−2Q) (26e)

Φ̇ = AfΦ+A211,1y + (A211,3 − ĽC1,3)w̌ + (A212 − ĽC1,2)u; Φ(0) = Φ0 (26f)

˙̌
θ = −ΣPr(θ̌)− Σ(CΦ+ C1,3w̌ + C1,2u)

′Q(yd −B0u− Cx̌− (C1,3w̌ + C1,2u)θ̌)−
[

Σ ΣΦ′
]

Q̄ξc

+γ2Σ(CΦ + C1,3w̌ + C1,2u)
′N−1(y −B0u− Cx̌− (C1,3w̌ + C1,2u)θ̌); θ̌(0) = θ̌0 (26g)

˙̌x = −ΦΣPr(θ̌) +Ax̌ − (ΠC′γ−2 +ΦΣ(CΦ + C1,3w̌ + C1,2u)
′)Q(yd −B0u− Cx̌− (C1,3w̌ + C1,2u)θ̌)

+(A211,1y +A211,3w̌ +A212u)θ̌ +Bu+ Ďw̌ −
[

ΦΣ γ−2Π+ΦΣΦ′
]

Q̄ξc

+(ΠC′ + γ2ΦΣ(CΦ + C1,3w̌ + C1,2u)
′ + L)N−1(y −B0u− Cx̌ − (C1,3w̌ + C1,2u)θ̌); x̌(0) = x̌0(26h)

where ξc := ξ̂ − ξ̌. Associated with this identifier, we have the upper bound of the value function W :
S+ σ × IRnO×σ × IRσ × IRnO × IRσ × IRnO → IR+:

W (Σ,Φ, θ, x, θ̌, x̌) = |ξ − ξ̌|2Σ̄−1 = |θ − θ̌|2Σ−1 + γ2|x− x̌− Φ(θ − θ̌)|2Π−1 (27)
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whose time derivative is given by

Ẇ = − |Cx+ (C1,3w̌ + C1,2u)θ +B0u− yd |2Q +
∣

∣Cx̌ + (C1,3w̌ + C1,2u)θ̌ +B0u− yd
∣

∣

2

Q
−
∣

∣

∣
ξ − ξ̂

∣

∣

∣

2

Q̄
(28)

+ |ξc |2Q̄ + γ2 |wb |2 + 2(θ − θ̌)′Pr(θ̌)− γ2
∣

∣y −B0u− Cx̌− (C1,3w̌ + C1,2u)θ̌
∣

∣

2

N−1

−γ2
∣

∣

∣
wb − w∗(t, ξ[0,t], y[0,t], u[0,t], w̌[0,t], yd[0,t], ξ̂[0,t])

∣

∣

∣

2

∀Σ ∈ S+σ, ∀Φ ∈ IRnO×σ, ∀θ ∈ IRσ, ∀x ∈ IRnO , ∀θ̌ ∈ Θo, ∀x̌ ∈ IRnO , ∀ξ̂ ∈ IRσ+nO , ∀wb ∈ IRqb ,

∀w̌ ∈ IRq̌, ∀u ∈ IRm, ∀yd ∈ IRm

Also, the cost function (11) can equivalently be written as:

Jiγtf = −
∣

∣ξ(tf )− ξ̌(tf )
∣

∣

2

(Σ̄(tf ))−1 +

∫ tf

0

(
∣

∣Cx̌(τ) + (C1,3w̌(τ) + C1,2u(τ))θ̌(τ) +B0u(τ)− yd(τ)
∣

∣

2

Q

+ |ξc(τ) |2Q̄(τ,y[0,τ],w̌[0,τ],yd[0,τ],u[0,τ],ξ̂[0,τ])
− γ2

∣

∣

∣
wb(τ) − w∗(τ, ξ[0,τ ], y[0,τ ], u[0,τ ], w̌[0,τ ], yd[0,τ ], ξ̂[0,τ ])

∣

∣

∣

2

+2(θ − θ̌(τ))′Pr(θ̌(τ)) − γ2
∣

∣y(τ)−B0u(τ) − Cx̌(τ) − (C1,3w̌(τ) + C1,2u(τ))θ̌(τ)
∣

∣

2

N−1) dτ (29)

Note that the matrix Φ may be suitably generated by prefilters of signals of y, w̌, and u, to replace dynamics
(26f) to further simplify the identifier structure.

This completes the identification design step. We now turn to the control design for the uncertain system,
with the identifier above in place.

Based on (29), the optimal choice for ξc is ξc = 0σ+nO
, i. e.,

ξ̂ = ξ̌ (30)

and the optimal choice for u is simply µ : Θo × IRnO × IRq̌ × IRm → IRm

u = µ(θ̌, x̌, w̌, yd) = (Bp0(θ̌))
−1(yd − Cx̌− (C1,3w̌)θ̌) (31)

This completes the adaptive controller design step. With the optimal choices of the (30) and (31), we have
the controller expressed as (26a)–(26f) and the following dynamics for θ̌ and x̌:

˙̌θ = −ΣPr(θ̌) + γ2Σ(CΦ + C1,3w̌ + C1,2u)
′N−1(y − yd); θ̌(0) = θ̌0 (32a)

˙̌x = −ΦΣPr(θ̌) +Ax̌+ (A211,1y +A211,3w̌ +A212u)θ̌ +Bu+ Ďw̌

+(ΠC′ + γ2ΦΣ(CΦ + C1,3w̌ + C1,2u)
′ + L)N−1(y − yd); x̌(0) = x̌0 (32b)

where u is given by (31). Furthermore,

Ẇ = − |Cx+ (C1,3w̌ + C1,2u)θ +B0u− yd |2Q −
∣

∣ξ − ξ̌
∣

∣

2

Q̄
+ γ2 |wb |2 + 2(θ − θ̌)′Pr(θ̌)− γ2 |y − yd |2N−1

−γ2
∣

∣

∣
wb − w∗(t, ξ[0,t], y[0,t], u[0,t], w̌[0,t], yd[0,t], ξ̂[0,t])

∣

∣

∣

2

(33)

= − |Cx+ (C1,3w̌ + C1,2u)θ +B0u− yd |2Q −
∣

∣ξ − ξ̌
∣

∣

2

Q̄
+ γ2 |wb |2 + 2(θ − θ̌)′Pr(θ̌)− γ2 |wb − wbopt |2

∀Σ ∈ S+ σ, ∀Φ ∈ IRnO×σ, ∀θ ∈ IRσ, ∀x ∈ IRnO , ∀θ̌ ∈ Θo, ∀x̌ ∈ IRnO , ∀wb ∈ IRqb , ∀w̌ ∈ IRq̌, ∀yd ∈ IRm

where the worst-case disturbance with respect to the value function W is given by

wbopt(t, ξ[0,t], u[0,t], w̌[0,t], yd[0,t], ξ̌[0,t]) = E′N−1(yd(t)−B0u(t)− C̄ξ(t))

+
1

γ2
(Iqb − E′N−1E)D̄′(Σ̄(t))−1(ξ(t)− ξ̌(t)) (34)
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and

Jiγtf = −
∣

∣ξ(tf )− ξ̌(tf )
∣

∣

2

(Σ̄(tf ))−1 +

∫ tf

0

(2(θ − θ̌(τ))′Pr(θ̌(τ))

−γ2
∣

∣wb(τ) − wbopt(τ, ξ[0,τ ], u[0,τ ], w̌[0,τ ], yd[0,τ ], ξ̌[0,τ ])
∣

∣

2
) dτ ≤ 0 (35)

Next, we turn to study the robustness and tracking properties of the proposed adaptive control law.

5 MAIN RESULT

In this section, we present the main result of this paper by stating a theorem on the robustness and tracking
properties of the proposed adaptive control law.

The closed-loop system dynamics are

Ẋ = F (X, yd, w̌) +G(X, yd, w̌)wb = F (X, yd, w̌) +G(X, yd, w̌)M̀ẁb; X(0) = X0 (36)

where X := (xō, θ, x,Σ, sΣ,Φ, θ̌, x̌); F , and G are smooth mappings on D × IRm × IRq̌; and

X0 ∈ D0 :=
{

X0 ∈ D
∣

∣ θ ∈ Θ, Σ(0) = γ−2Q−1
0 ∈ S+ σ, Tr

(

(Σ(0))−1
)

≤ Kc,

sΣ(0) = γ2 Tr (Q0 ) , T̀ (xō(0), x1(0), · · · , xn(0)) = T̀ (xō(0), x(0)) ∈ D́0, θ̌0 ∈ Θ
}

D :=
{

X ∈ IRǹ−
∑

m
i=1 νi × IRσ × IRnO × Sσ × IR× IRnO×σ × IRσ × IRnO

∣

∣ Σ ∈ S+ σ, sΣ ∈ IR+, θ̌ ∈ Θo

}

Since (33) holds, the value function W satisfies the following Hamilton-Jacobi-Isaacs equation by Lemma 8
of Pan and Başar (2023):

∂W

∂X
(X)F (X, yd, w̌) +

1

4γ2

∥

∥

∂W

∂X
(X)G(X, yd, w̌)

∥

∥

2

IRqb
+ Q̂(X, yd, w̌) = 0; ∀X ∈ D, ∀yd ∈ IRm, ∀w̌ ∈ IRq̌ (37)

where Q̂ : D × IRm × IRq̌ → IR is smooth and given by

Q̂(X, yd, w̌) = |Cx+B0u+ (C1,3w̌ + C1,2u)θ − yd |2Q + γ4
∣

∣x− x̌− Φ(θ − θ̌)
∣

∣

2

Π−1∆Π−1

+ǫ
∣

∣(CΦ + C1,3w̌ + C1,2u)(θ − θ̌)
∣

∣

2

γ2N−1−Q
− 2(θ − θ̌)′Pr(θ̌)

Clearly, Q̂ is nonnegative as long as X ∈ D and θ ∈ Θ.
Since the value function W is not a positive-definite function for the entire closed-loop system state X , we

cannot deduce stability properties of the closed-loop system directly from the value function W . As it turns
out, the closed-loop adaptive system possesses a strong stability property: all closed-loop signals remain
bounded with respect to bounded disturbance ẁ[0,∞) ∈ Ẁd the initial condition x́0 ∈ D́0, and bounded
reference trajectory yd[0,∞), in addition to the above stated attenuation (dissipation) property. This is made
precise in the following theorem.

Remark 1 Assumptions 1 – 8 are standard as in the SISO case Zeng et al. (2010).

Theorem 1 Consider the robust adaptive control problem formulated in Section 3, with Assumptions 1 –
8 holding. Then, the adaptive controller µ given by (31) with the worst-case estimate ξ̂ generated by the
optimal policy (30), achieves the following strong robustness properties for the closed-loop system.

1. Given cw ∈ IR+ and cd ∈ IR+, there exists a constant cc ∈ IR+ and a compact set Θc ⊂ Θo such that
for any uncertainty quadruple (x́0, θ, ẁ[0,∞), yd [0,∞)) ∈ Ẁ with

| x́0 | ≤ cw; x́0 ∈ D́0; | ẁ(t) | ≤ cw; ẁ[0,∞) ∈ Ẁd; |yd(t) | ≤ cd; ∀t ∈ IR+
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all closed-loop state variables xō, x, x̌, θ̌, Σ, sΣ, and Φ exist and are bounded as follows, ∀t ∈ IR+,

|xō(t) | ≤ cc, |x(t) | ≤ cc, | x̌(t) | ≤ cc, θ̌(t) ∈ Θc, ‖Φ(t)‖ ≤ cc,

K−1
c Iσ ≤ Σ(t) ≤ γ−2Q−1

0 , γ2 Tr(Q0) ≤ sΣ(t) ≤ Kc.

Therefore, there is a compact set S ⊂ D such that X(t) ∈ S, ∀t ∈ [0,∞). Hence, there exists a constant
cu ∈ IR+ such that |u(t) | ≤ cu, ∀t ∈ [0,∞).

2. The controller µ belongs to M and achieves disturbance attenuation level 0 with respect to w̌ and
disturbance attenuation level γ with respect to wb for any uncertainty quadruple (x́0, θ, ẁ[0,∞), yd [0,∞)) ∈
Ẁ.

3. For any uncertainty quadruple (x́0, θ, ẁ[0,∞), yd [0,∞)) ∈ Ẁ with w̌[0,∞) ∈ L̄∞, ẁb[0,∞) ∈ L̄2 ∩ L̄∞,

yd [0,∞) ∈ L̄∞, and w̌[0,∞) and yd [0,∞) being uniformly continuous on the interval IR+, the output of
the system Cx+Bp0(θ)u + (C1,3w̌)θ asymptotically tracks the reference trajectory yd, i. e.,

lim
t→∞

(Cx(t) +Bp0(θ)u(t) + (C1,3w̌(t))θ − yd(t)) = 0m

Proof We consider the first statement. Fix an uncertainty quadruple (x́0, θ, ẁ[0,∞), yd [0,∞)) ∈ Ẁ with

| x́0 | ≤ cw; x́0 ∈ D́0; | ẁ(t) | ≤ cw; ẁ[0,∞) ∈ Ẁd; |yd(t) | ≤ cd; ∀t ∈ [0,∞)

for some cw ∈ IR+ and cd ∈ IR+. With the controller µ and ξ̂ designed, we have a fixed initial condition
X0 ∈ D0 for the closed-loop system (36). Consider the maximal length interval [0, Tf) where the differential
equation (36) for the closed-loop system admits a solution that lies in D, which is clearly an open set. Then,
by the smoothness of the system, the solution X(t) is unique on [0, Tf). Note that the maximal length of
the interval, Tf , may depend on the specific waveform for the disturbance ẁ[0,∞) and the reference yd [0,∞).
We will show that the maximal length of the interval, Tf , is always ∞.

By Lemma 1, the covariance matrix Σ and the signal sΣ are uniformly upper bounded and uniformly
bounded away from 0, as depicted in the first statement of the theorem. By Proposition 3 of Pan and
Başar (2023), Σ and sΣ are inside compact subsets of S+ σ and IR+, respectively. The reference trajectory
is uniformly bounded since |yd(t) | ≤ cd, ∀t ≥ 0.

Introduce the dynamics ˙̃η = λmη̃ + y − yd; η̃(0) = 0m, where λm ≈ max(Re (λ(Af ) )) ∈ IR− and λ(Af )
denotes all eigenvalues of the matrix Af . There exist positive definite matrices Z, Y ∈ S+m such that

2λmZ + γ−2ZNZ + Y = 0m×m

Then, taking V : IRm → IR+, V (η̃) := | η̃ |2Z , we have V̇ = − | η̃ |2Y +γ2 |y−yd |2N−1−γ2
∣

∣y−yd−γ−2NZη̃
∣

∣

2

N−1 ,
∀η̃ ∈ IRm, ∀y ∈ IRm, ∀yd ∈ IRm. Define the vector of variables

Xe := (θ̌, x̃− Φθ̃, η̃)

Clearly,Xe : [0, Tf) → De := Θo×IRnO×IRm, and the function U := V+W can be written as U = Ū(t,Xe(t)),
where Ū : [0, Tf) × De → IR+. Under the assumption that ẁ is uniformly bounded on [0,∞), we have the
following inequality for the derivative of U :

U̇ ≤ −
∣

∣ξ − ξ̌
∣

∣

2

Q̄
+ γ2

∥

∥

∥
M̀
∥

∥

∥

2

c2w + 2(θ − θ̌)′Pr(θ̌)− | η̃ |2Y − γ2
∣

∣y − yd − γ−2NZη̃
∣

∣

2

N−1

≤ −γ4
∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1∆Π−1
+ 2(θ − θ̌)′Pr(θ̌)− | η̃ |2Y + c̄2w

where c̄w := γcw

∥

∥

∥
M̀
∥

∥

∥
. Then, there exists a compact set Ω1(cw) ⊂ De such that, ∀t ∈ [0, Tf), if Xe ∈

De \ Ω1(cw) then U̇ < 0. Let

UM (Xe) := Kc

∣

∣θ − θ̌
∣

∣

2
+ γ2

∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1
+ | η̃ |2Z
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Um(Xe) := γ2
∣

∣θ − θ̌
∣

∣

2

Q0
+ γ2

∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1
+ | η̃ |2Z

Then, clearly Um(Xe) ≤ Ū(t,Xe) ≤ UM (Xe), ∀t ∈ [0, Tf), ∀Xe ∈ De. By Lemma 5 of Pan and Başar (2023),
there is a constant c1 ∈ IR+ such that Um(Xe(t)) ≤ c1, ∀t ∈ [0, Tf ).

Then, on the interval [0, Tf), the vector Xe is uniformly bounded. Hence, we have that θ̃, x̃−Φθ̃, and η̃

are uniformly bounded. (θ̃ is bounded to begin with since θ ∈ Θ and θ̌ ∈ Θo.)
Note that the signal η̃ is uniformly bounded, it is minimum phase and has uniform vector relative degree

1 with respect to the input y with respect to Dη̃0 := IRm and C according to Başar and Pan (2020), where

the signal yd is regarded as disturbance. Then, this signal η̃ is minimum phase with respect to Dη̃0 × D́0

and C × Ẁd and has relative degree 1 with respect to the input u (by a straightforward vectorized version
of Theorem 1 of Pan and Başar (2019a)). The signal η̃ is uniformly bounded. It is easy to see that the η̃

dynamics with input y and output η̃ may serve as a reference system in the application of Proposition 2 of
Pan and Başar (2019b) (more precisely, a straightforward vectorized version of it). By Theorem 1 of Pan
and Başar (2019a), the composite system with control input u, output η̃, and disturbance inputs yd and ẁ

may serve as a reference system in the application of Proposition 2 of Pan and Başar (2019b).
We conclude the boundedness of the variables Φ as follows. Define

Φ̇u = AfΦu + (A212 − ĽC1,2)u; Φu(0) = 0nO×σ (38a)

Φ̇y = AfΦy +A211,1y + (A211,3 − ĽC1,3)w̌; Φy(0) = Φ0 (38b)

Then, we have Φ = Φy +Φu.
The relative degree for each of the elements of Φu is at least 1 with respect to the input u, and is the

output of a stable linear system. By Proposition 2 of Pan and Başar (2019b), this yields that Φu is uniformly
bounded, where the reference system has output η̃ and inputs u, ẁ, and yd.

The relative degree for each of the elements of Φy is at least 1 with respect to the input y, and is the
output of a stable linear system. By Proposition 2 of Pan and Başar (2019b), this yields that Φy is uniformly
bounded, where the reference system has output η̃ and input y and yd.

Hence, Φ is uniformly bounded on [0, Tf). Since x̃− Φθ̃ and θ̃ are uniformly bounded, we have that the
signal x̃ is uniformly bounded.

Note that the dynamics of x is (5a), which can be written as

ẋ = Afx+ Ľ(y − (C1,3w̌ + C1,2u)θ −B0u− Ewb) +Bu+ Ďw̌ +Dwb + (A211,1y +A211,3w̌ +A212u)θ

To apply Proposition 2 of Pan and Başar (2019b), the dynamics are separated into y dependent and u

dependent parts using the linearity of the system, x =: xu + xy. The dynamics of xu and xy are given by

ẋu = Afxu − ĽBp0(θ)u +Bu+ (A212u)θ; xu(0) = x(0)

ẋy = Afxy + Ľ(y − (C1,3w̌)θ − Ewb) + Ďw̌ +Dwb + (A211,1y +A211,3w̌)θ; xy(0) = 0nO

The signal xu has relative degree at least 1 with respect to u. It is uniformly bounded by Proposition 2 of
Pan and Başar (2019b), where the reference system has inputs u, yd, and ẁ, and output η̃. The signal xy

has relative degree at least 1 with respect to y. It is uniformly bounded by Proposition 2 of Pan and Başar
(2019b), where the reference system has inputs y and yd, and output η̃. Hence, x is uniformly bounded.

Then, x̌ is uniformly bounded since both x and x̃ are uniformly bounded.
It can further be concluded that u is uniformly bounded by the control law (31) and Bp0(θ̌) is uniformly

bounded away from singularity due the θ̌ ∈ Θo, ∀t ∈ [0, Tf), (see the last paragraph preceding (17)). This
then yields the boundedness of y by (5b).

By the minimum phase condition on the system (2) and the canonical form (3), we have that the state
x́ is uniformly bounded. Therefore, xō is bounded as desired.

In order to show the existence of a compact set Θc ⊂ Θo such that θ̌(t) ∈ Θc, ∀t ∈ [0, Tf), introduce the
function

Υ := W + P (θ̌)(ρo − P (θ̌))−1
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Clearly, Υ can be written as Υ(t) = Ῡ(t, X̄e(t)), where Ῡ : [0, Tf) × D̄e → IR+ and X̄e := (θ̌, x̃ − Φθ̃) ∈
D̄e := Θo × IRnO . The total time derivative of Υ is given by

Υ̇ = Ẇ + ρo
(

ρo − P (θ̌)
)−2 ∂P

∂θ
(θ̌) ˙̌θ

≤ −γ4
∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1∆Π−1
+ c̄2w − γ2 |y − yd |2N−1 + ρo

(

ρo − P (θ̌)
)−2

(

− ∂P

∂θ
(θ̌)ΣPr(θ̌)

+
∂P

∂θ
(θ̌)γ2Σ(CΦ + C1,3w̌ + C1,2u)

′N−1(y − yd)

)

≤ −γ4
∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1∆Π−1
+ c̄2w − ρopr(θ̌)

(

ρo − P (θ̌)
)−2 ∂P

∂θ
(θ̌)Σ

( ∂P

∂θ
(θ̌)
)′

+γ2

∣

∣

∣

∣

ρo
(

ρo − P (θ̌)
)−2

(CΦ + C1,3w̌ + C1,2u)Σ
( ∂P

∂θ
(θ̌)
)′
∣

∣

∣

∣

2

N−1

= −γ4
∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1∆Π−1
+ c̄2w − ρopr(θ̌)

(

ρo − P (θ̌)
)−2 ∂P

∂θ
(θ̌)Σ

( ∂P

∂θ
(θ̌)
)′

+γ2ρ2o
(

ρo − P (θ̌)
)−4

∣

∣

∣

∣

(CΦ + C1,3w̌ + C1,2u)Σ
( ∂P

∂θ
(θ̌)
)′
∣

∣

∣

∣

2

N−1

≤ −γ4
∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1∆Π−1
+ c̄2w − ρopr(θ̌)

(

ρo − P (θ̌)
)−2 ∂P

∂θ
(θ̌)Σ

( ∂P

∂θ
(θ̌)
)′

+γ2ρ2oc2
(

ρo − P (θ̌)
)−4 ∂P

∂θ
(θ̌)Σ

( ∂P

∂θ
(θ̌)
)′

for some c2 ∈ IR+, where the last inequality follows from the uniform boundedness of w̌, Φ, u, and Σ. Then,
there exists a compact set Ω2(c2, c̄w) ⊂ D̄e such that, ∀t ∈ [0, Tf), if X̄e ∈ D̄e \ Ω2(c2, c̄w) then Υ̇ < 0. Note
that, ∀(t, X̄e) ∈ [0, Tf)× D̄e,

Υm(X̄e) := γ2
∣

∣

∣
θ̃
∣

∣

∣

2

Q0

+ γ2
∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1
+ P (θ̌)(ρo − P (θ̌))−1 ≤ Ῡ(t,Xe) ≤ Kc

∣

∣

∣
θ̃
∣

∣

∣

2

+ γ2
∣

∣

∣
x̃− Φθ̃

∣

∣

∣

2

Π−1

+P (θ̌)(ρo − P (θ̌))−1 =: ΥM (X̄e)

By Lemma 5 of Pan and Başar (2023), there exists a constant c3 ∈ IR+ such that Υm(X̄e(t)) ≤ c3, ∀t ∈ [0, Tf).
Hence, there exists a compact set Θc ⊂ Θo such that θ̌(t) ∈ Θc, ∀t ∈ [0, Tf).

Thus, statement 1 holds on the interval [0, Tf). Then, there exists a compact set S ⊆ D, such that
X(t) ∈ S, ∀t ∈ [0, Tf). By a standard result in ordinary differential equations, we have Tf = ∞. Thus,
statement 1 is proved.

Next, we prove the second statement. Fix any uncertainty quadruple (x́0, θ, ẁ[0,∞), yd [0,∞)) ∈ Ẁ . Then,

we have x́0 ∈ D́0, θ ∈ Θ, and ẁ[0,∞) ∈ Ẁd. For any tf ∈ IR+, there exist constants cw ≥ 0 and cd ≥ 0
such that | x́0 | ≤ cw, | ẁ(t) | ≤ cw, and |yd(t) | ≤ cd, ∀t ∈ [0, tf ], since ẁ and yd are continuous. By the
first statement and the causality of the closed-loop system, there exists a solution X : [0, tf ] → D for the
closed-loop system. Hence, the closed-loop system (36) admits a unique solution on [0,∞). This further
implies that the proposed adaptive control law belongs to M. Choose

l(t, θ, x[0,t], y[0,t], w̌[0,t], yd [0,t]) = γ4
∣

∣x− x̌− Φ(θ − θ̌)
∣

∣

2

Π−1∆Π−1 + ǫ
∣

∣(CΦ + C1,3w̌ + C1,2u)(θ − θ̌)
∣

∣

2

γ2N−1−Q

−2(θ − θ̌)′Pr(θ̌)

The function l is clearly nonnegative as long as X(t) ∈ D with θ ∈ Θ, which is guaranteed by the first
statement. Then, we have

Jγtf = Jγtf +

∫ tf

0

Ẇ dτ +W (0)−W (tf ) ≤ −W (tf ) ≤ 0
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This shows that the controller µ given by (31), with the optimal choice ξ̂ = ξ̌ given by (30), achieves the
disturbance attenuation level 0 with respect to w̌ and disturbance attenuation γ with respect to wb as
prescribed by Definition 1. This establishes the second statement.

Last, we prove the third statement. For any uncertainty quadruple (x́0, θ, ẁ[0,∞), yd [0,∞)) ∈ Ẁ with
w̌[0,∞) ∈ L̄∞, ẁb[0,∞) ∈ L̄2 ∩ L̄∞ and yd [0,∞) ∈ L̄∞, we have that Statements 1 and 2 hold. Then,

∫ ∞

0

|Cx(t) +B0u(t) + (C1,3w̌(t) + C1,2u(t))θ − yd(t)|2Q dt ≤ W (0) + γ2

∫ ∞

0

∣

∣M̀ẁb(t)
∣

∣

2
dt < +∞

by the dissipation inequality (33) and the second statement. This implies that Cx+B0u+(C1,3w̌+C1,2u)θ−
yd ∈ L̄2 on the interval [0,∞). By the uniform continuity assumption on w̌ : IR+ → IRq̌ and yd : IR+ → IRm,
and the boundedness of ẋ, we have that Cx + B0u + (C1,3w̌ + C1,2u)θ − yd : IR+ → IRm is uniformly
continuous. Therefore, by Lemma 4.3 of Zhao et al. (2009), we have

lim
t→∞

(Cx(t) +B0u(t) + (C1,3w̌(t) + C1,2u(t))θ − yd(t)) = 0m

This completes the proof of the theorem. 2

6 AN EXAMPLE

In this section, we present a numerical example that serves to illustrate the robust adaptive control design
presented in this paper. The designs for the example were carried out using MATLAB.

We consider the following adaptive noise cancellation problem. The uncertain linear system is given as
follows, where θ̄1 ∈ r− 3

2 ,−
1
2
, θ̄2 ∈ r 1

2 ,
3
2
, and θ̄3 ∈ r 1

2 ,
3
2
are unknown parameters,

˙̀x =





0 1 0
0 0 1
0 −θ̄3 0



 x̀+





2θ̄1 θ̄2
0 0
0 0



u+





0 0 1
0 0 0
0 0 0



 ẁb; x̀0 =





0
1
10
1
10



 (39a)

y =

[

1 0 0
0 0 0

]

x̀+

[

θ̄1 θ̄2
−θ̄2 θ̄1

]

u+

[

1 0 0
0 1 0

]

ẁb (39b)

z =

[

1 0 0
0 0 0

]

x̀+

[

θ̄1 θ̄2
−θ̄2 θ̄1

]

u (39c)

This uncertain system admits uniform vector relative degree of zero. The system of (39) has the extended
zero dynamics canonical form

˙̀x =







−(1 +
θ̄2
1

θ̄2
1+θ̄2

2
) 1 0

0 0 1
0 −θ̄3 0






x̀+







1 +
θ̄2
1

θ̄2
1+θ̄2

2
− θ̄1θ̄2

θ̄2
1+θ̄2

2

0 0
0 0






y +







−(1 +
θ̄2
1

θ̄2
1+θ̄2

2
) θ̄1θ̄2

θ̄2
1+θ̄2

2
1

0 0 0
0 0 0






ẁb

y =

[

1 0 0
0 0 0

]

x̀+

[

θ̄1 θ̄2
−θ̄2 θ̄1

]

u+

[

1 0 0
0 1 0

]

ẁb

This implies that the extended zero dynamics is of third order and the system is minimum phase with respect
to IR3 and C if θ̄21 + θ̄22 > 0 according to Başar and Pan (2020). Assume that we know that the observability
indices for the measurement channels are 3 and 0 for channels 1 and 2, respectively. Clearly, the system
(39) admits strict observer canonical form. Now, we transform the system into such a form and introduce a
disturbance transformation to arrive at the following design model.

Introducing the state transformation x̀ = T̀ x with

T̀ =





1 0 0
0 1 0

−θ̄3 0 1
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we have

ẋ =





0 1 0
−θ̄3 0 1
0 0 0



x+





2θ̄1 θ̄2
0 0

2θ̄1θ̄3 θ̄2θ̄3



u+





0 0 1
0 0 0
0 0 θ̄3



 ẁb (40a)

y =

[

1 0 0
0 0 0

]

x+

[

θ̄1 θ̄2
−θ̄2 θ̄1

]

u+

[

1 0 0
0 1 0

]

ẁb (40b)

We assume that the true value of θ̄1 is −1, the true value of θ̄2 is 1, and the true value of θ̄3 is 1. To normalize
the unknown parameters, we set θ1 = 2θ̄1 + 2, θ2 = 2θ̄2 − 2, θ3 = 2θ̄3 − 2, and define θ = (θ1, θ2, θ3, θ4, θ5),
where θ4 = θ1θ3 and θ5 = θ2θ3. Then the true value for parameter vector θ is 05, and θ1, θ2, θ3, θ4, θ5 all
belong to r−1,1.

We then introduce disturbance transformation w = M̀ẁb

M̀ =













1 0 0
0 1 0
0 0 1
θ3
2 0 0

0 0 θ3+2
2













and obtain the design model as follows:

ẋ =





0 1 0
−1 0 1
0 0 0



x+





0 0

− θ3
2 0
0 0



 y +





θ1
θ2
2

θ4
4 − θ3

2
θ5
4 + θ3

2
θ4
2 + θ1 − θ3

θ5
4 + θ2+θ3

2



 u+





−2 1
0 0
−2 1



u+





0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



w (41a)

y =

[

1 0 0
0 0 0

]

x+

[

−1 1
−1 −1

]

u+

[

θ1
2

θ2
2

− θ2
2

θ1
2

]

u+

[

1 0 0 0 0
0 1 0 0 0

]

w (41b)

We choose the design parameter as

γ =
√
5; Q =

[

2 −1
−1 1

]

; Q0 =
1

10
I5; ρo =

12

5
; β∆ = 0; ∆1 = I3; Kc =

5

2
; Φ0 = 03×5; ǫ = K−1

c sΣ

and the convex function P (θ) as

P (θ) =
1

5

(

exp(2(θ21 − 1)) + exp(2(θ22 − 1)) + exp(2(θ23 − 1)) + exp(2(θ24 − 1)) + exp(2(θ25 − 1))
)

Finally, we choose the initial conditions and the reference trajectory as

x̌0 = 03; θ̌0 = (−0.5, 0.5, 0.25, 0.25, 0.25); yd1 = 0; yd2 = 0

We present two sets of simulation results for this example. The first set of simulations is aimed to demonstrate
the asymptotic tracking capability of the adaptive controller. The disturbance input ẁb is fixed to be
identically zero. The simulation results are shown in Figure 1. We see that the tracking errors are converging
to zero as predicted and the transient of the system response is well behaved. The state estimates and
parameter estimates are well behaved. The parameter estimation errors do not converge to zero since there
is no persistent excitation in the system. We also observe that control inputs are bounded in magnitude by
0.1 and the integral performance index grows from zero to a positive constant that is less than 0.005. These
simulation results corroborate our theoretical results.

The second set of simulation results is to illustrate the robustness property of the controller. We set
ẁ1 = 0.1 sin(0.025t) + band-limited white noise with power 0.0001, ẁ2 = 0.15 sin(0.02t+ π) + band-limited
white noise with power 0.0001, and ẁ3 = 0.05 sin(0.015t+π) + band-limited white noise with power 0.0001.
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Figure 1: System response in the absence of any exogeneous disturbance.

(a) Tracking errors (short term); (b) Tracking errors (long term); (c) State estimates;

(d) Parameter estimation errors; (e) Control inputs; (f)
∫ t

0
(|z(τ)− yd(τ) |2Q − γ2 |w(τ) |2) dτ

19



The simulation results are shown in Figure 2. We see that the tracking errors are bounded in magnitude by
0.15; the control inputs are bounded in magnitude by 0.12; and the transient of the system response is well
behaved. The parameter estimates are well behaved. The integral performance index is upper bounded by 0
and show negative slopes converging to negative infinity. These simulation results corroborate our theoretical
results.

7 CONCLUSIONS

In this paper, we have presented a systematic procedure for robust adaptive control design for uncertain
minimum phase square MIMO LTI systems that admit uniform vector relative degree of zero. We assumed
that the MIMO linear system has m output terminals, and a set of upper bounds n1, . . . , nm ∈ Z+ for the
observability indices of the system is known. Then, it is always possible to pad dummy state variables to
the system to arrive at a model that admits the observability indices n1, . . . , nm, remains minimum phase,
and admits uniform vector relative degree of zero. We assumed that this extended system admits strict
observer canonical form. As mentioned earlier in the paper, this assumption is not restrictive at all, since
when n = n1 = · · · = nm then the extended system admits the strict observer canonical form. The design
procedure resembles that for the SISO case (Zeng et al., 2010), except that we allow part of the disturbance
inputs to be measured in this paper. The objective of the control design is to achieve attenuation level of
0 with respect to measured disturbance inputs and the desired attenuation level of γ ∈ IR+ with respect
to unmeasured disturbance inputs. We have formulated the underlying robust adaptive control problem
as a nonlinear H∞ optimal control problem with a single cost function. By making use of the cost-to-
come function methodology in game theory for affine nonlinear H∞ optimal control, we have obtained a
finite-dimensional closed-form expression for an upper bound of the value function of the identifier for the
unknown system. Assuming the existence of a known convex compact set for the true values of the system
parameters, on which the high frequency gain matrix will remain invertible, we have introduced a smooth
parameter projection scheme for the identifier, such that the adaptive control system is robust with or
without persistently exciting input signals. Using the explicit form of the value function for the identifier,
the nonlinearH∞ adaptive control problem becomes a full-information nonlinear robust control problem, and
the optimal control law is the certainty equivalent control law (Zeng et al., 2010). An important observation
on the worst case disturbance inputs we have made is that it will keep the measurement outputs identically
equal to the reference trajectory, and thus deprive of the controller any information into the system. The
adaptive controller achieves the desired disturbance attenuation objective and guarantees boundedness of
all closed-loop signals under bounded admissible disturbance waveforms, bounded admissible initial states,
and bounded reference trajectories without the need for any persistency of excitation condition or any
stochastic noise assumptions. We have proved that the tracking error converges to zero when, in addition,
the unmeasured disturbance inputs are of finite energy, and the measured disturbance and the reference
trajectory are uniformly continuous. A numerical example of a system with two inputs and two outputs has
been included and the simulation results have corroborated our theoretical findings.

A number of future research directions stand out as promising. One fruitful direction pertains to the
study of the counterpart of the theory developed here to nonlinear systems with noisy output measurements.
Another interesting topic would be to study the robustness of the adaptive system with respect to unmodeled
fast dynamics. Another interesting direction lies in the study of networked robust adaptive control systems.
It has been observed and proved that robust adaptive control systems designed according to Pan and Başar
(2000) can be networked in a feedback loop fashion, and under the satisfaction of the small gain condition
for the L2-gains of the closed-loop system, the closed-loop signals will remain bounded for any admissible
bounded exogeneous disturbance inputs and any admissible bounded initial conditions that are further
convergent (that is, the tracking errors converge to zero) when the exogeneous disturbance inputs are L2

and vanishing. We believe that this result holds for the adaptive systems addressed in this paper and in
Pan and Başar (2023). This will pave the way for the application of the robust adaptive control system
theory in practical use. Another fruitful direction lies in the case when the given MIMO LTI system is

20



0 200 400 600 800 1000

time[sec]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
tra

ck
in

g 
er

ro
r

(a)

0 200 400 600 800 1000

time[sec]

-0.15

-0.1

-0.05

0

0.05

0.1

co
nt

ro
l

(b)

0 200 400 600 800 1000

time[sec]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

st
at

e 
es

tim
at

e

(c)

0 200 400 600 800 1000

time[sec]

-1.5

-1

-0.5

0

0.5

1

pa
ra

m
et

er
 e

st
im

at
e 

er
ro

r

(d)

0 200 400 600 800 1000

time[sec]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

di
st

ur
ba

nc
e 

in
pu

t

(e)

0 200 400 600 800 1000

time[sec]

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

pe
rfo

rm
an

ce
 in

de
x

(f)

Figure 2: System response under exogeneous disturbances.

(a) Tracking errors; (b) Control inputs; (c) State estimates;

(d) Parameter estimation errors; (e) Disturbance inputs; (f)
∫ t

0
(|z(τ)− yd(τ) |2Q − γ2 |w(τ) |2) dτ
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comprised of multiple square MIMO LTI subsystems in parallel interconnection, satisfying an interconnection
property, where the subsystems are assumed to be robust adaptive control ready (i. e., with positive uniform
vector relative degree and uniform observability indices, or with zero uniform vector relative degree) but the
composite system may have nonuniform vector relative degree and/or nonuniform observability indices. We
envision that a centralized controller can be designed without requiring any dynamic extension or adding
dummy state variables to the design model. We believe that the results of this paper and of Pan and Başar
(2023) will serve as building blocks for the solution to the parallel interconnected MIMO LTI system problem.
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