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1 | INTRODUCTION

Summary

In this paper, we present a systematic procedure for robust adaptive control design
for minimum phase uncertain multiple-input multiple-output linear systems that are
right invertible and can be dynamically extended to a linear system with vector rel-
ative degree using a dynamic compensator that is known. For this class of systems,
it is always possible to dynamically extend them, and/or integrate a select set of out-
put channels, and/or padding dummy state variablea to arrive at a system model that
admits uniform vector relative degree and uniform observability indices that is fur-
ther minimum phase according to [1]]. We assume that the uniform vector relative
degree is known and an upper bound for the uniform observability indices is known.
We also assume that the unknown parameter vector lies in a convex compact set such
that the high frequency gain matrix remains invertible for any parameter vector value
in the set. These are the assumptions that allow for a successful design of a robust
adaptive controller. A numerical example is included to fully illustrate the controller

design and the effectiveness of the controller.

KEYWORDS:

nonlinear H* control based robust adaptive control; multiple-input multiple-output linear uncertain

systems; minimum phase; extended zero dynamics canonical form; strict observer canonical form.

Robust adaptive control design for uncertain linear systems has attracted a lot of research attention since the 1980s, [2,13,4, 3, 6,
7,18,19]. A satisfactory solution to the single-input single-output (SISO) linear systems has been obtained in [J] using the game
theoretic approach [10]. See [5] for a complete literature review of the robust adaptive control and nonlinear adaptive control
methodologies. There, one can further find extensive simulation results comparing our robust adaptive control strategy with
those of nonadaptive H *-control strategy. The solution to the SISO problem has further been refined in [6], generalized to zero
relative degree case [9], generalized to include three degrees of freedom problem [§], and generalized to a class of multiple-
input multiple-output (MIMO) linear systems that consists of parallel interconnected SISO linear systems with limited output
feedback [[11]. The solution in [[11] is essentially based on SISO theory as obtained in [8]. The solution methodology has also
been successfully generalized to SISO uncertain nonlinear systems in [[12]. It is observed that the minimum phase assumption
is the key to the success of robust adpative control design for SISO uncertain linear systems. The generalization of the robust
adaptive control design to MIMO systems depends critically on the generalization of the minimum phase assumption to MIMO

0 Abbreviations: MIMO, multiple-input and multiple-output; SISO, single-input and single-output.
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linear systems. In [[13], a generalized minimum phase assumption has been introduced for SISO systems, which is necessary for
a successful design of a model reference controller for SISO linear systems. It is proved that, for SISO systems, the generalized
minimum phase condition is equivalent to all zeros of the transfer function from control input to the output have negative
real parts if the system is controllable from the control input and is observable from the output (Proposition 3 of [13]). More
relationships between the generalized minimum phase assumption and its classical counterpart have been obtained in [[13]. This
generalized minimum phase assumption has been extended to MIMO linear systems in [1]. It is observed that the generalized
minimum phase assumption is necessary for a successful design of model reference controller for MIMO linear systems. It is
also observed in [1] that the generalized minimum phase assumption is invariant under finite steps of dynamic extensions ([14]).
Based on the SISO solution [5], we observe that the key canonical forms of the uncertain linear system are the extended zero
dynamics canonical form and the strict observer canonical form. In [[15], we established methodologies to extend (dynamically)
a given minimum phase uncertain MIMO linear system model to achieve an extended system that admits the extended zero
dynamics canonical form and the strict observer canonical form without rendering the system non-minimum phase. This sets
the stage for the generalization of the robust adaptive control design to MIMO uncertain linear systems.

In this paper, we present a systematic procedure for robust adaptive control design for uncertain minimum phase MIMO linear
systems that are right invertible and can be dynamically extended to a linear system with vector relative degree using a known
dynamic compensator. For this class of systems, it is always possible to dynamically extend it [[1], and/or integrate a select set of
output channels [[15], and/or padding dummy state variables [[15] to arrive at a system model that admits uniform vector relative
degree r € Z_ and uniform observability indices v € IN (r < v), which is minimum phase according to [1]. We assume that
r € N is known and an upper bound » for v is known (r = 0 case will be treated in another paper). Thus, the system admits
the extended zero dynamics canonical form and the strict observer canonical form. The observable part of the system is then
the design model for the system, which is further restricted to be in a block diagonally identical structure for the backbone of
the system that is independent of the unknown parameter vector and the control inputs and measurement outputs of the system
(this structural assumption does not restrict the class of uncertain systems that is amenable to the robust adaptive control design,
but is crucial for the robustness proof to go through for MIMO systems). The design procedure closely resembles that for the
SISO case [5]. The general objective of the control design is to attenuate the effect of external disturbance input on the system
tracking error. Using a game theoretic approach, we formulate the robust adaptive control problem as a nonlinear H* optimal
control problem with a single cost function. By making use of the cost-to-come function methodology for nonlinear H * optimal
control, we have obtained a closed-form expression for the value function of the identifier for the unknown system, which
provides a finite-dimensional estimator structure for the uncertain linear system. Assuming the existence of a known convex
compact set for the true values of the system parameters such that the high frequency gain matrix will remain invertible for
any parameter values in the set, we introduce a smooth parameter projection scheme for the identifier, which makes it possible
to apply the backstepping [[16] control design at a later step. With this projection algorithm, the adaptive control system is
robust with or without persistently exciting input signals. Using the explicit form of the value function for the identifier, the
nonlinear H* adaptive control problem is then transformed into a full-information nonlinear robust control problem, which is
subsequently solved using the integrator backstepping methodology. This design procedure has led to a recursive design scheme
for two classes of robust adaptive controllers for the minimum phase uncertain MIMO linear system (each one parametrized by
the desired disturbance attenuation level y). The controller actively incorporates the covariance information on the parameter
estimates into the control design, and exhibits (in principle) the asymptotic certainty equivalence property, if the worst case
covariance matrix converges to zero. However, to guarantee the boundedness of all closed-loop signals, an appropriate cost
functional was selected to keep the covariance matrix bounded away from zero. Hence, the asymptotic certainty equivalence
structure is in fact never realized. But, when the covariance matrix is close to zero, the controller behaves as a certainty equivalent
one. The adaptive controller also achieves the desired disturbance attenuation level for all admissible continuous exogenous
disturbance input waveforms and all admissible initial conditions on the infinite horizon. Furthermore, it is proved rigorously
that the control law guarantees boundedness of all closed-loop signals under bounded admissible exogenous disturbance inputs,
bounded admissible initial conditions, and bounded reference trajectory together with its derivatives up to rth order without the
need for any persistency of excitation condition or any stochastic noise assumptions. Asymptotic tracking is achieved when the
initial condition is admissible, the reference trajectory together with its derivatives up to rth order are bounded, the admissible
disturbance inputs are bounded, and those disturbance inputs with positive attenuation level are of finite energy.

The balance of the paper is organized as follows. In the next section, we list the notations used in the paper. In Section
we provide a precise formulation of the problem to be solved, delineate the basic assumptions regarding the underlying system,
as well as the input signals, and include a brief discussion of the solution methodology adopted. In Section ] we present the
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identification design for the nonlinear H* adaptive control problem, with detailed discussions on the projection algorithm used
in the construction. This identifier then becomes the system to be controlled in a worst-case sense, under an equivalent expression
for the cost function, transformed to the state space of identifier states. The recursive control design is discussed in Section
In Section [6] we present the precise statements and complete proofs of the properties of the closed-loop adaptive systems.
The theoretical results are also illustrated on a numerical example in Section[7] which clearly illustrates the effectiveness of the
design methodology. The paper ends with the concluding remarks of Section [§] and three appendices presenting some results
essential for the derivations in the main body of the paper.

2 | NOTATIONS

Let R denote the real line; R, :=(0,00) C R; R_ :=(-00,0) C R; R_Jr =[0,0) CR; R, :=RU{—00} U {400}; N be the
set of natural numbers; Z, := INU {0}; C be the set of complex numbers, where i is the complex unit. For any number a € C,
a denotes its complex conjugate and Re (a) denotes its real part. Let KK be either R or C. Unless specified, all signals, constants,
and matrices are real. For a continuous function f, we say that it belongs to C; if it is k-times continuously differentiable, we say
it belongs to Cy; its /th order derivative is denoted by D! f or £; its partial derivative with respect to some variable x is denoted
by 9 Fora Bg (R)-measurable function f : I — R", where I C R is an interval, we say f is ip, where p € [1,0) C R, if

0x
(/, | f(x)|P dr)'/? < oo; the class of all functions g that g = f a.e.in I is denoted by [ f] € L,; when f is continuous, and we

say that f is L if max{sup,c; | f(#)|,0} < co. We let R" denote the Euclidean space, withnorm | z| := \/Z, unless specified
otherwise. For any matrix A, A’ denotes its transpose. We will denote n X n-dimensional real symmetric, positive semidefinite,
and positive definite matrices by S, Sq,, and S, . and say Q) < Q,,if O, — Q) € Sy, and Q) < 0,1 Q, — Q| € S,
vV0,,0,€S,; Tr (Q1 ) denotes the trace of Q,. For any tensor A € B (R™,B (R™,Y)), A™T21 denotes the transpose of tensor
A between the last two indices, and thus A(x)(y) = AT21(p)(x) € Y, Vx € R™,Vy € R™. Forany z € R" and any Q € Spsdns
|z|2Q denotes z’Qz. I, denotes the n X n-dimensional identity matrix. For any matrix A, A’ = I. For any matrix M, || M I,
denotes its p-induced norm, 1 < p < oo; for p = 2, we simply write it as || M ||. For any matrices M, and M,, we will write
M, ® M, to denote the Kronecker product of M, and M,. 0,,., denotes the m X n-dimensional matrix whose elements are all
zeros. For any waveform U,y € C(U0, 1), R?), where 7, € (0,00] C R, and p € Z_, ||u[0y,f)||Dc = SUPreqoy) |u(t)|; when this
quantity is bounded, we say that Ujoz,) € G, ([0, 1 f), R?). For an operator A : X; - X,, where X, and X, are Banach spaces,
A’ denotes its adjoint operator. For an operator A : H, — H,, where H, and I, are Hilbert spaces, A* denotes its Hermitian
adjoint. For an R™™? tensor A, A, . ; denotes the n x m-dimensional matrix with the last index fixed ati = 1, ..., p. e, ; denotes
the ith unit vector in R™. For any real (complex) Banach spaces X; and X,, X} denotes the dual space of X, and X}* denotes
the dual of X7, we will write B (X,X,) to denote the set of all bounded linear operators from X; to X,. For any Banach space
X, x € X and x,, € X*, we will write ({x,, x)) to denote the scalar x (x); we write By (x, r) to denote the open ball centered
at x with radius € R, in X; and span (A) C X denotes the subspace generated by A C X. For any Hilbert space J(, x, y € X,
(x, y)q¢ denotes the inner product of x and y. On R, we will denote fa,b to be the compact interval [a, b] C R, where a < b and

a,b € R; B (R) denotes the Borel measurable subsets of R; and uy denotes the Borel measure on R. For any sets A, B with
ACB, y,3 denote the indicator function of the set A on B, i.€., Xap(X) 1= { (]) i 2 2\[1 , Vx € B; the interior of A is
A°, the closure of A is Z, the complement of A is X, all relative to B. For a function f : X — Y, where X is a set and Y is a
Banach space, we write Pof : X — Rtobe Pof(x) = || f(x)[ly, Vx € X.

Any signal with a hat accent (like %, 6, &) is the worst-case estimate of the corresponding signal without the accent, which is
something we design like the control signal. Any signal with a check accent (like X, 6, 1) is some signal we can measure, or the
estimate of the corresponding signal without the accent that is produced by the cost-to-come function analysis. Any signal with
a grave accent (like X) is some signal that is unknown in general and is associated with the given unknown MIMO linear system.
Any signal without any accent is a signal in the design model. Any signal with tilde accent (like %, 8, &) is the estimation error
of the signal without the accent, which equals to the signal without the accent minus the signal with the check accent.



Z.PAN and T. BASAR 5

3 | PROBLEM FORMULATION

We consider the adaptive control problem for continuous-time finite-dimensional minimum phase MIMO linear time-invariant
systems.
We are given system .S with state space representation:
X = AXx + Bi+ Dw; x(0)=x, € D, (1a)
y=Cx+Fi+Ew (1b)
where x € R” is the state vector, i € Z X9 € bo is the initial condition, where bo CR'isa subspace (Z\)0 =R" usually);
i € R is the control input, p € IN; w € RY is the disturbance input, ¢ € Z; € R" is the measurement output, m € IN; and
the matrices A, B, D, C, F, and E are constant matrices of appropriate dimensions and generally unknown. It is assumed that
m < p; the control inputs are partitioned into & : = (i, u,), where i1, is m-dimensional; the disturbance inputs are partitioned into
w = (W, w,), where w € RY are measured disturbance inputs (in addition to the measurements ¥), § € Z +; and the waveform
of Wy, is assumed to belong to Wd (=CR,, RY) usually), which is of class B; (see [13]). Thus, we are only considering
W),y that is continuous. In the proof of the main result of the paper, u;, will be treated much like as part of the exogeneous

disturbance w, := (u,, W), especially like the measured disturbances ), and the set of admissible extended disturbance waveform
is Wd =C(R,_,R™)x Wd. We now state a number of assumptions, which are quite natural in this context.

Assumption 1. The system (1) (with control input #,, output y, and extended disturbance input tb,) is minimum phase with
respect to D, and W, as defined in [1].

Assumption 2. There exists a known dynamic controller .S, with state space representation:
i = Agl+ Bguy; 1(0)=1,€ R (22)
lty = Cyet + Dyeut, (2b)
where ny, € Z, that is a result of finite number of steps of dynamic extension algorithm [14] such that the composite system

of S and S (with control input u, and output y) admits well-defined vector relative degree.

By a result of [[1], the composite system of S and S, (with control input u,, output , and extended disturbance input t,) is
minimum phase with respect to D, x R and W,.

In case that the composite system of .§' and S, does not have uniform vector relative degree, by Lemma 2 of [15], we may
selectively integrate the components of the output y as in the following state space representation S,;:

w =A@+ B,y; w(0)=w, € R" (3a)

y = Cyw+ Dy (3b)
S S, an_d Sg4. with control input u,, output y, and
extended disturbance input ), is minimum phase with respect to D, and W,, where D, : = R"i x Dy X R" C R"*"*"e and is
a subspace, and admits uniform vector relative degree r € Z_ from u, to y. The system S; and the relative degree r are known.

Denote the composite system of S, S, and Sy by S'e. By Lemma 3 of [[15], we can extend the state space of this composite
system to arrive at a system .S with state space representation

where n,; € Z, and y is m-dimensional, such that the composite system of S,

% = A%+ Bu+ Dw; %(0) =%, € D, (4a)
y=Cx+ Fu+ Ew (4b)
where £ € R%itetitmn=Y,vi s the state vector; v, ..., v,, are the observability indices of S’e; n2>max g, vV, = VE€Z,,

where v is the observability index [17] of the composite system S, and # is the uniform observability index of the pair (A, C);
%, € D, is the initial condition, where D, := D, X {Omn—Zm_l y } C R™Hatitnee=XiL Vi ig g subspace; u := (u,,u;) € R is
the control input; and the matrices A, B, D, C, F, and E are constant matrices of appropriate dimensions, which are generally

unknown. The system (@) (with control input u, output y and extended disturbance input «,) is minimum phase with respect to
D, and W,. The system . admits uniform vector relative degree r.

Assumption 3. The upper bound »n of the observability index v of system S‘e is known. (n is the uniform observability indices
of the pair (A, C‘).)
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In this paper, we consider the case r € IN. The case of r = 0 requires a separate analysis, and will be addressed in a future

paper.
Now, partition the system (@) into observable and unobservable parts as

-

%, = Az%;+ Ay, %, + By + Dy )25(0) = %5 (5a)
%, = Ak, + Bu+ Dby £,(0) = (5b)
y=C%,+ Fu+ Ew (5¢)
where %, is nm-dimensional, and the pair (4,, C,) is observable.

By Corollary 3 of [[L3], there exists an invertible matrix T such that in (x5 %) 1= (X5, X150, X,) = T‘I(XE, X,) coordinates,

we have that x; is m-dimensional, i = 1, ..., n, and the system (3) admits the strict observer canonical form representation
X; = AgXx;+ Aj1x) + B; u, + Bjyuy + Dyw (6a)
xi=Ai’lxl+xi+l+B,aua+B,bub+Dw i=1,...,n-1 (6b)
X, = Ap1x) + B, u, + B, ju, + D,w (6¢)
y = x, + Fu, + Fu, + Ew (6d)
where all matrices are constant and of appropriate dimensions, By, := F,, and B ,=0,,Yi=0,..,r—1,and B, , is of

rank m and is therefore invertible.
For the solvability of the problem, we now make the following natural assumption.

Assumption 4. The output equation (&d) is independent of u;, and w (if it depends on u, but not 1o, we just need to setu, =0,_,,
in the final control design).

By further introducing a disturbance transformation w, = M w,, where w,, is mq,-dimensional, g, € N, and M is an unknown

constant matrix, we may obtain the following design model for the dynamics of x = (x4, ..., x,,) in (€)
X = Ax+ Ay + Bu, + Byu, + Dt + Dw, + (Ayyy 1y + Ay oty + Agyy 310 + Ayypu,)0 (7a)
y=Cx+ Ew, (7b)

where the matrices A, /{, B, éb, 13, D, C, and E are known matrices of appropriate dimensions; # € ® C R is the unknown
parameter vector of the system; Ay i, Asjy, Ayjp3. and Ay, are known second-order R™"-valued tensors of appropriate
dimensions; and further we have the following structures.

aj I, ap,l, 0 0

mxm mxm 0
a2,11m ayoly aysl, . : (r_gmxm
A= : : 0m><m =14,®1,, B= :r 5 Ao = (@210, k) mnxoxm
a,_ 111 an—l,ZIm a,_ 1,n— II 1,n Im B
an,llm an,ZIm an,n—llm an,nlm !
dl,llm dl,qblm
C=[1,0uim]|=C®L; E=|el, —e,l,|=E®IL; D=| : : =:D,®I,
dn,llm dn,qblm

a;; € R,Vi,j=1,...,nwith j < i+ 1; a; i1 is nonzero, i = 1,...,n—1; and Gijk = 0,Vi=1,...,(r—1)m, and B,
are m X m-dimensional matrices, i = r,...,n, e;; € R and di’j eR,i=1,..,nj=1,..,q. The structures of B and
A,,, are the result of our knowledge of the uniform vector relative degree r of the system. We will further partition w0 into
(10, W,), where 1, is of dimension §;, i = 1,2. Then, partition A,;; ; accordingly as A211 30 = Ay, 1w1 + A211 320, with
Ay, 31 1= (@211.3,1,i,j. ) mnxoxg, A4 o113 = 0, VI <0 < (r — I)m; and partition D accordingly as Db = Db, + Db,
with D, having the first (r — 1)m rows equal to 0(,_1)mxg,- This follows from the fact that y has relative degree at least r with

respect to i, .

Assumption 5. There exists a known smooth nonnegative proper convex function P(6), such that the true value of @ lies in
convex compact set ® := {9 eR’ | PO)<1 } Furthermore, V6 € ©, the matrix B, + A;ére =: B,() is invertible, where
Ajyy,, is the 2nd order R™-valued sub-tensor of A,,, consisting of ((r — 1)m + 1)st to (rm)th indices in the output dimension, all

indices in the first dimension and all indices in the second dimension..
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B,(0) being invertible follows from the fact that system (6) admits uniform vector relative degree r from u, to y. We define
a class of parametrized convex compact sets ©, := {5 e R’ | PO)<p }, Vp>1.

Assumption 6. Associated with system (6), we are given an m-dimensional reference trajectory y,(¢) that y is to track. The
reference trajectory y, is r times continuously differentiable. The signal y, and the first r derivatives of y, are available for
control design, that is the vector Y; = (y,, yzl), cees yfi’))_

The objective of the control design is to achieve asymptotic tracking of the reference trajectory while rejecting the uncertainty
quadruple (%, 0, Wyg o), yfi’[)oym)) € DyxOx W, xC(R,,R™) =: W, which comprises the initial state of the system S, the true
values of the unknown parameters, and the disturbance input waveforms, and the rth order derivative of the reference waveform.
We will obtain a class of causal robust adaptive controllers,

u(t) = (u, (1), uy(1) = u(t, Yio.0- Wio.p Yagou) @®)

vVt € R_Jr to achieve the desired the tracking and disturbance attenuation objectives (to be delineated shortly). Let us denote
the class of these causal admissible controllers by M. Thus, after the design of the controller y, the actual controller is the
composition of Sy, u, and S, to be denoted by ji.
The control design objective is now made precise in the following.

Definition 1. A controller y is said to be achieve disturbance attenuation level 0 with respect to W, and disturbance attenuation
level y € R, with respect to 1, and wy, if there exist nonnegative functions /(2, 0, Xy ;1> ¥10.11» Wio.11» Yaro.1) and [o(Xo, 0,) such
that for all 7, > 0 the following dissipation inequality holds :

sup J, <0 )

> Yy =
(X0:05 10,062V 4 0.00)) €W

where
ty
2 v v 2
Jyrf = /0 (| Cx(t) — yd(7)| + (7, e’x[O,r]’ Yio.21» Wo.0)» Yd[O,r]) - y2 | w2(1)|
_.2 2 _ 2 _ 5 _ ¥ 2 _I(% B 1
Y |wb(7)| )dr —y~ | (0 Ho,x(O) xo) o lo(xo»eo) (10)
0

Here, éo is the initial guess of the unknown parameters; X, is the initial guess of the unknown initial state x(0); and (¢ + mn) X

(o + mn)-dimensional matrix Q, € S, ) is the quadratic weighting on the initial estimation error, quantifying our level of
Q' 0%

©,0;" Ty + ,0,' @)

(c+mn

confidence in the a priori estimates of 6 and x(0); and Q_al admits the structure [ , where Q, € S,

and I, € S, respectivelym

mn?>

Note that, in the above definition, the negative weighting on the disturbance input w is through the negative weightings on
the transformed disturbance inputs w, and ,. The motivation behind the above definition is to guarantee that, for each time
instant 7, > 0, the squared L, norm of the output tracking error x; — y, on [0,7 ] is bounded by y? times the squared L, norm
of the transformed disturbance input Whio,4,] plus y? times the squared L, norm of the measured disturbance wzm,,f] plus some
constant that depends only on the initial condition of the system. When the disturbance inputs w0, and i, have finite L, norms on
[0, ), then the L, norm of the tracking error x; — y, is also finite, which further implies that lim,_, . (x,(?) — y,(#)) = 0,,, under
additional stability conditions of the closed-loop system. On the other hand, for nonvanishing disturbance inputs w, and ,,
whose truncated squared L, norms increase linearly with 7, the rate of increase for an upper bound of the truncated squared L,
norm of the tracking error x; — y, is also linear, and is bounded by y? times the rate for the disturbance (i,, w;). Clearly, when
such an objective is achieved, the closed-loop system will be robust with respect to the disturbance w, but the exact attenuation
level with respect to tb will in general depend on the unknown transformation matrix M. Under Assumption[3, M can be selected
to have a known bound for its norm, which then guarantees a known bound for the attenuation level from w to the tracking error.

The problem formulated above can be brought into the framework of H* optimal control for affine-quadratic nonlinear
systems with imperfect state measurements. Toward this end, we expand the system dynamics (Z) by adjoining the simple

! At this point, I1, is quite arbitrary. Later, to simplify the structure of the adaptive controller to be derived, we will choose it to be the solution of an algebraic Riccati
equation.
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dynamics of 8: @ = 0,. Let & denote the expanded state & = (6, x), which satisfies the following dynamics:

é — [ Oaxa 06xmn]§+[065m]y+[06xm]u
Agj11 Y+ Agyply + Agpy 300 + Ajjpu, A A B ¢

0 0. 0
+ GXgp—m) u, + oxXd | b + oxXmgq, w
[ B, b D D b
=: A&+ Ay + Bu, + Byu, + D + Dw, (11a)
y = [0, C|E+ Ew,=: C&+ Ew, (11b)
The worst-case optimization of the cost function (I0) can be carried out in two steps: first a maximization over %, 8, and w,,
given the the measurements available to the controller, and then maximization over ), y, and Y. The idea is that the controller
can observe the underlying system only through the measurements, and hence once the measurement waveform is fixed, the

control input is an open-loop time function with respect to the underlying dynamics. This is precisely the idea that underpins
the cost-to-come function methodology, leading to the following identity for each fixed 7, > 0:

Sul?r) A Jyll
(X0:051010,00)2Y 4 0.00)) €V
= sup oup Jytf
Y1009y EC- Yo 0.00) ECtE0,00)EC (;CU,o,wm,m),yi,’ﬁo,w))ewIy[o,m»Yd 10.00)>20,00)
< sup sup Iry .

v ] ® .
Y1000 ECYa 10,00 ECW10.09 EC (5,0, 10310, 0015Y' 10,00 EW1Fi0.00)+ Yot 10,009 0.0

where the right-hand sup operator
sup
()’CO’g’wh[ﬂ,m)’yifrio,m))ewly[ﬂ,oo)’yd 10.00)@[0.00)
is over all initial conditions X, € R +attmn=Z, v parameter value § € ©, and disturbance waveforms W00 € C that
generate the output waveform y|, ., with iy, ., and Y, ., fixed and known. In the above, we have elected to be conservative
that we supremize with respect to wyy ), instead of Wy . This is done solely for the consideration of the existence of a
finite-dimensional solution for the problem.

The right-hand supremization, which will be carried out first, corresponds to the evaluation of the worst-case performance
for any set of known measurement waveforms, which renders the control input waveform independent of the actual disturbance
input waveform, since the control input is generated as a function of the output waveform and the reference trajectory. This is
the identification design step, discussed next in Section4l Because of the special structure of the problem under consideration,
an upper bound of the value function for this step of the optimization, which is related to the cost-to-come function for this
problem, can be obtained explicitly by utilizing the results of Appendix B of [5].

The left-hand supremization, which will be carried out second, corresponds to the computation of the worst-case measurement
waveform against a given control law. Since the control law is restricted to be a causal function of the measurements and the
reference trajectory, it plays a critical role in the determination of the achievability of the objective (9)). This is the control design
step, which is discussed in Section

The design function I(%, 0, X[ ;1 Yjo.1» Wio.1» Yapo.1) 18 selected based on two considerations: the existence of a solution to the
problem; and the ease of analysis of stability and robustness of the resulting closed-loop system. It is built up in the identifier
and the controller design steps. In the identifier design step, the weighting functions are selected to provide necessary stability
properties, and to yield a desirable structure for the identifier that is amenable to the later backstepping design procedure. In
particular, they are selected to maintain a predetermined positive definite lower bound for the worst-case covariance matrix of
the parameter estimates, which is necessary for the robustness of the closed-loop system.

In the controller design step, we employ a backstepping procedure for the design of the input u,, which also yields an upper
bound of the value function for the closed-loop system. Based on this upper bound function, the choice of u;, can be determined
to further decrease the negative drift of the value function. But the choice for u, must be bounded, since u,, is the only control
input that is allowed to have infinite control authority. Therefore, the choice for u;, will be passed through a saturation function to
allow for the stability analysis to go through. We prove later that all signals in the closed-loop system are uniformly bounded in
time for any uniformly bounded admissible disturbance input waveforms, any uniformly bounded reference trajectories together
with its derivatives up to rth order, and any bounded admissible initial condition.
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This completes the formulation of the robust adaptive control problem and the general solution method to be adopted. We
now turn to the identification and control designs in the next two sections.

4 | DESIGN OF A WORST-CASE IDENTIFIER

In this section, we present the identification design for the adaptive control problem formulated. For this step, the measurement
waveforms Yo o) Wio.00)» Ya[0,00)> and therefore the control waveforms u,, ) and uy ., are assumed to be fixed and known.
We consider the cost function:

t . ) . 5
g = / (|Cx(@) = 3@ [ + |&0) = &) | | =7 | wy@) [ dr =72 |0 = B x(0) ~ %), (13)
0 0

where the first positive definite term is required by the objective of the adaptive control design (IQ); the second nonnegative
definite term is introduced for robustness considerations of the complete adaptive system, where & is the worst-case estimate for
the expanded state £, which is like a control signal yet to be determined; the two negative-definite weighting terms involving the
disturbance w, and the initial conditions are again required by the objective of the adaptive control design (9). The nonnegative-
definite weighting function Q will exhibit a special structure to be delineated shortly. Compared with the cost function (@), we
have neglected here some terms which are constant for this step of optimization.

To avoid singularity in estimation, we assume that

Assumption 7. The matrix E is of full row rank, or equivalently, E, E { =:¢(2eR -

Note that N := EE' = {1, € S,,,. By expressing the above cost function completely in the & state variables, we can
apply Lemma 10 of [5] to obtain an equivalent, more transparent, expression for JI.’V.
Let £ and & be defined by
£ = (A-LN"'OE+5(A-LN"'C)Y + L DD - LIN'I/ - 5(2C'N"'C - €'C - O)S:
r? 14
1. _ 1] 0o Q'@
20)=— = 14
(0) y2Q° 2 [%Q Uy + 0,0, (14a)
E=(A+S(C'C+0)E-SCy, + 08) + Ay + Byu, + Bu, + Db + (y*£C' + L)N~'(y - C);
£0) = [ . ] (14b)
X0
where L := DE'is givenby L = OffLX'" with L := DE' = (D\E))®I,,=: L, ® I,
Then, the cost function (I3)) can equivalently be written as (from Lemma 10 of [3])
! 2 2 2
—_— ~ g —_— £ —_— £ —_— 2 —_— ~E
= -Jem-éo,, . /0 (€& —y,@]| +|&@ —é@)|, ~ 7|y - CE |
R 2
_72 ’ wy(r) — w,(r, 5[0,7]’ Yio,z1° Y[0,7)> w[o,,]’ Yajo,z1> 5[0,7]) ’ )dz (15)
where
10,7 &o,012 Yi0.21- 0,21 Wyo.e1 Yaro.e1- Go.e) = E'NT' (@) = CE(@) + " Ly~ ENT D E@) @) - &) (16)
Furthermore, an upper bound of the value function for this estimation step is W
W, &8 = 1E— &L, (17)

whose time derivative is given by

. - 2 2 R R
W= =|C& =y, |"+|va— CE| - o [E=E[ +

2 2
2 =% 2 i £
I |y —Ce |N-1 -7 |wb = W1, 0.3 Vo1 o> Wro» Yaro.n» Sro.1) (18)
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Partition & := (6, %) and & := (0, %) compatible with the partition of & = (@, x). Our intention is to keep 6 within a vicinity of
O such that the matrix B, + AZ; =8B 0(é) is always invertible, by using a smooth projection algorithm for the backstepping
design procedure to be presented in the next section to work.

Define

Py = inf P(9) 19)
det(B, +A2122]r0) 0

By Assumption[3] we have p,,; € (1, 0] C R,. Choose p, € (1, p,,) C R. We will design the smooth projection algorithm such
that the estimate 6 lies in the open set

0,:={0eR’ | P(9)<p0}C®

L gis invertible, V0 € ©,, . and there exists ¢) € ]R+, such that H (B, +A212 g)~! H

Itis immediate that this implies that B, + A, . o

o vl e G)pa.
By Proposition 4 on Page 178 of [[18], we have

‘;—g(é)(e -0)< PO -PO <1-P@H); VOeR° (20)
We now add to the right-hand side of the dynamics (IEE]) for & the following term when P(6) > 1:
exp(— P(o) 1 !
TR 10, ]
(p, — P(9))

Hence, we have

exp(— P(g) 1)

E= —(1- zor ®) £ [ Z20) Oy | + A= £C'(5, = CO + Ay

(p, — P(0))
—S0(E - &) + Byuy + Bu, + Db+ (°SC" + DNy = C&);  &0) = [zo ] 1)
0
It is easy to verify that the following nonlinear functions P, and p,
, . P op :q(P(é> D op
P.O) :=(1- (0)————— 0—0 =—(— 22
(0) = (1 = yor-(0)) (pD—P(é))3(09( 0)) =: p(O)(=-(6)) (0))3(09( ) (22)

are C, on the set ©®,, where i is as defined in Definition2] In view of this, the derivatlve of the value function W given by (I7)
is equal to

_ 2 .2 A2 A2 5 )

W= —|Ce—y |+ |ya = C&| = |e=&| +|E-¢]  +7lwyl
.2 5 R 2 y .
=72 |y = CE| = 1*|wy = w.t. & s Yo o Wios Yaoa o) | +2(0 = 0 B(0)

The last term above appears because of the modification in the dynamics of &. We now have the following inequality:

20— by p.@) = 29 LO =D P G HBPO =Dy Zop )1 - P@) <0: Vieo,
(p, — P(6))* 99 (p, — P(0))?
which shows that the last term in the expression for W is nonpositive, is zero on the set ©, and approaches —oo as 8 approaches
the boundary of the set @, (i.e., P(9) approaches p,).
To further deduce the existence of the covariance matrix ¥ and the structure of the identifier, we pursue the following line of
detailed analysis. First, partition the worst-case covariance matrix & (compatible with the partition of &) as
-« | T Zp
2|2, =) >
and introduce the quantities:
® =%,z (24a)
=y, - 5, 27'8)) (24b)
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Next, choose the following structure for the weighting matrix O:

OUan] s [e@’C’(yzN‘l —1,)CD 0

oXmn
A 0 0 25)

mnxXmn

- - 0
_ 51 oXo
0=Xx [0

mnXo mnXo

where A 1=y 28, I1+y72(A, ®I,,) with B, € R_Jr being a constantand A; € S, , being an n X n-dimensional positive-definite
matrix; and e is a scalar function defined by

T (@)

() 1= ——— (26)

c

with K, € [y*Tr (QO ) ,0) C R being a constant corresponding to the preselected maximum level for the quantity
Tr ((Z(t))‘1 ) The Riccati differential equation (RDE) for £ is expressed as

£ = (A-LN"'OL+5A-LN"'C)Y + L DD - ZIN-'L' ~ G *C'N-'C - €'C
Y Y
_ [ecI)/C/(yzN—l - I1,)CP 0. ])i+ [Om Om] ,
Omnxa Omnxmn OHXO' A
_ B Q—l Q—I(D/
S0)=y [ o 0o 0
D0, Ty + ®,0,' D
By Lemma 6 of [J], we obtain the following differential equations for X, ®, and IT:
L= —(1-e)ZP'C' (>N - [,)CPT;  3(0) = y2Q;" (27a)
d=A-LN'C-TIC'(N' - l21m)C)d> + Ay 1Y+ Ay oty + Agyy 30+ Ayppu; D(0) = @ (27b)
Y

IT=A-LN 'O+ - LN'Cc)Y -TIC'(N~! - %Im)CH +DD' — LN7'L' +y?A; TI0)=TI, (27c)

We note that in order to guarantee the boundedness of the matrix X, we can pick y such that YIN"I > 1T mo 1. €., 722> 1or
y > ¢!, For the RDE (27d), we note that the pairs (A4, C) and (A, DD’ — LN~'L’ + y2A) are both observable. Then, the RDE
@7Zd) admits a unique positive-definite solution on [0, co), and the solution converges, as ¢ — oo, to the unique positive-definite
solution of the corresponding algebraic Riccati equation ([28) below, if (28)) admits a stabilizing positive-definite solution.

Ba Ba

(A-LN'C+ 5 I)I+TI(A-LN™'C+ 71,,,,7)’ -Tic' %1, - izlm)cn + DD’
Y

_LN_IL,+A1 ®Im =0mn>(mn =0nxn®lm (28)

Clearly, if y > ¢~!, then (28) admits a unique positive-definite stabilizing solution. Because of the structure for A, D, C, and
E, the above algebraic Riccati equation (28) admits a solution IT = I1; ® I,,, where I1, satisfies the algebraic Riccati equation
29) below in Assumption[8]—an assumption we make to clarify the possible choices of .

Assumption 8. The desired disturbance attenuation level y satisfies y > ¢~! and is such that the following algebraic Riccati
equation admits a positive-definite stabilizing solution I1;:

p p
(A = ELC+ I+ T (A = CLC + =

that is, the matrix A, — L,>C, + %In —I1,Cl(¢* - #)C1 is Hurwitz.

1
1) -T,Cl(* - ﬁ)clnl +D, D, —*LL' +A,=0,, (29

Under Assumption [8 the RDE (27d) admits a positive-definite solution on the infinite horizon [0, 00). To further simplify
the controller structure and allow a proof of the closed-loop robustness, we assume that Il = I1 = I1; ® I,,, where II, is the
positive-definite solution to (29). This implies that I1(r) = II = I, = I1; ® I,,, where I1(?) is the solution to (27d). Then, the
matrix A, := A— LN7'C —TIC"(N~' — y—lzlm)C =(A - Li*C, - I,C/({* =y HC)® I, =: Af ® 1, is Hurwitz.

From its definition, the function e(#) can be shown to be less than or equal to 1 for any ¢ > 0. Therefore, the covariance matrix
2 is nonincreasing. This result is summarized in the following lemma.

Lemma 1. Consider the matrix differential equation (27a)) for the covariance matrix X. Let Assumption[8hold. Then, the matrix
2 is uniformly upper and lower bounded as follows:

-1 21
K. I, <Z(1) <XZ0) =770,
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Proof. Let [0,1,] denote the maximum-length interval on which Tr(Z~!(#)) < K,. Then, on this interval we have: £ < 0. If
Ly is finite, then, we have Tr ( (Z(tf))‘1 ) =K_,and 3= 0., on the interval [/, 00). This proves that 1, cannot be finite. Hence,
the matrix X is nonincreasing on [0, c0), and this verifies the upper bound.

Since 1, = oo, we have Tr ((Z(t))‘l ) < K, on the interval [0, o). Next, we observe the following inequality:

1
Tr (E)7) 2 Apgn (EO) ™) = —=—
( ) 2 Amin (1))
where A, (-) and 4_,,(-) denote, respectively, the minimum and maximum eigenvalues of a symmetric matrix. Therefore, we
have 4, (2(?)) > KC‘l , which yields the desired lower bound. O

In actual implementation, it is preferred not to invert the matrix Z on line. Computation of such an inverse for the purpose of
evaluating e can in fact be avoided (see [3]). Let s5(t) := Tr ((£())7!); thus, we have

sy = (1 - = DTr (COD'C’); 550)=y>Tr(Qy): €)=K sg(1) (30)

For ease of reference, we now summarize collectively the equations describing the identifier derived heretofore.

Ba Ba

(Al—Ll§2C1+71,,)H1+H1(A1—L152C1+ 1) -I,C/(¢* —y™C I, + D, D, — L,{*L + A, =0,,, (la)

3= —(1-e)F*? - DY C'COT; X(0) = yZ—ZQ(;l (31b)
§s = (1= =D Tr (COP'C’); s5(0) =y*Tr (Qy) (3lc)
e=Klsg (314d)
A=A, @1, A=A -LC -T,C/(* -y HC, (3le)
D = A;®+ Ay 1y + Agyi oty + Ay 310 + Aot @(0) = B (31f)
§=-3P@) - ZO'C'(y, — CX) — [T Z0' | Q¢, + y*(*Z0'C'(y — Cx);  6(0) =6, (31g)
% = —OZP,0) + A% — (y L+ @ZD)C'(y, — CX) + Ay + (A1 ¥ + Agyy oty + Ay 310 + Ayppu,)0
+Bu, + Byu, + Dib — [ @ y2I1 + @' | Q&, + (2(TIC" + y?@ZD'C’ + L)(y - C%);  %(0) = X, (31h)
where &, 1= & — &. Associated with this identifier, we have the upper bound of the value function:
W=e-82, =10-01,, +7’Ix-%x-®06-0), 32)
whose time derivative is given by
W= —|Cx—y,|"+|Cx—y, | - |§—é 2Q+ |&. |5 + 7% [w,|* +20 - 0) P.(B)

2
2,2 w2 .2 . 2
v ly-Cx|" -y ’wb —w, (1, 6[0’[]? V10,11 Y10,1> Wron> Yapon» é[oﬂ)’ (33)
Also, the cost function (I3)) can equivalently be written as:

2

A ORT-OI /0 (Cx@) =3y [ + 6O 30y a +2(0 - () P(6(x))

E@)! 107> Y1071 #0215 [0.71)

N 2
=26 () = CX@) P = v |w0y(®) = 0,5 &g 1 V0.1 1> W0y Varoey Epoen) | ) 7 (34)

Note that the matrix ® may be suitably generated by prefilters of signals of y, u,, 0, and u,, to replace dynamics (3I1) as follows
to further simplify the identifier structure. The pairs (4,, e, ,) and (A}, e, ,) are controllable. This implies that

M, = [A’}‘llen’n o Al e] (35a)

is invertible.
It is then straightforward to verify that the following prefiltering system for y, u,, @, and u, generates the matrix @ on line.

= Apn +e,,y; n0)=0,;i=1,....m (35b)
A = Apidg + €, 14 1,00=0,;i=1,....m (35¢)
Ay = Api Ay + €,y 1 (0)=0,;i=1,....,p—m (35d)
i = Apiy; + e, 0y 1;00=0,;i=1,....4 (35¢)

v

i = Apiily + €,,Wy; 0 =0,i=1,..,4, (351)
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by = ApiAy 2,0)=e,, (352)

m p—m
Z <([A;_11’7i  Ap ’71’] Mfl) ®1m> Aopi <([A’}_11’1bi o Api Ay Ay ] Mf_l) ® 1’") Asnzs i
i=1

[
i m

+Z (([A'}_llﬁu e Apii ’71,-] M ®1m> Agpizat Z <([A’}_11’1ai w Ap A Agi ] Mf_l)®1m> Arin: i
pay i=1

/2
+Z <([A’}_11i72i o Agihy; ﬁzi] M;1)®1m> Asnisn: it (([A'}_llflo  Apd, /10] Mf_l)®1m> @, (35h)
Py

where y = (yy, oo s V) g = Ugps ooy Ugy)s Uy = (Upys oo Uy )y Wy = (W, oo s W), and Wy = (W, ..., Wy ).
This completes the identification design step. We now turn, in the next section, to the control design for the uncertain system,
with the identifier above in place.

S | CONTROLLER DESIGN

In this section, we describe the controller design for the uncertain system under consideration. The key identity obtained from
the previous section is the equivalent form (34)) of the cost function (or the expression (33) for the total derivative of W). Based
on the equivalence (12)), we now need to supremize Jl.’y over all measurement waveforms. In (34) and (33), we see that the cost
function is given in terms of the estimated state variable X, 6, and X, whose dynamics are driven by the measurements y, b,
v4, and inputs u and £, which are signals we either measure or can construct. This is then a full-information control design
problem, which is truly nonlinear in nature. Instead of considering y as the maximizing variable, we can equivalently deal with
the transformed variable:

vi=y—Cx=:y—% (36)
In terms of v, we have
b = Ap®+ Ay X+ Agpiptty + Appy 30 + Ao, + Ay 0 (37a)
0 = —ZP(0) - ZD'C'(y, — %) — [T TP | Q&, + y*¢*E@'C'v (37b)
% = —OZP,() + A% — (y I+ @ZD)C'(y, — CX) + A%, + (Agyy ¥ + Ay oty + Agyy 310 + Agypu,)0
+Bu, + Byu, + Dib — [ @ y I+ OZD' | Q& + (A + (AZT?’; \0) + 2IIC" + y* @' C’ + Ly)v (37¢)
. 2 . 2 NE 2 2
W o= —|x; =y, | +|% — 4] —|§—§|Q_+|:SC|Q-+y2|wb|
« + . " 2
+2(0 - 9)’Pr(9) - Y2C2 |v |2 - }’2 ’ wy, — W, (%, €011 Y1011 U10.01> W01 Yaro.n» Sp0.1) (37d)

The control design will make use of the integrator backstepping methodology [[16]. We will further reveal the structure in the
estimator dynamics that allows for the application of (r + 1)-steps of integrator backstepping.

Note that A ; admits the same structure as the matrix A, with the first m columns changed by feedback. Then, the ® dynamics
can be rewritten as

D, =a,1D, +a;,D) + Ay 11X + A1y + Ag130,1W0 + Agpy 110 (38a)

O, =04,y + - +a,_, D+ Ay 1 X1 + Ay gttty + Agpy 32,1 Wa + Agpy gV (38b)

r—1,r

where @ := [<I>’1 <I>; ]/ and ®; are m X o-dimensional matrices, i = 1,...,n; Ay, 11 is the 2nd order R™-valued sub-tensor
of Ay that consists of the ((i — 1)m + 1)st to (im)th indices in the output dimension, all indices in the first dimension, and
all indices in the second dimension, i = 1, ...,n; Ay ,; is the 2nd order R"-valued sub-tensor of A, , that consists of the
((i—1)m+1)stto (im)th indices in the output dimension, all indices in the first dimension, and all indices in the second dimension,
i=1,....n; Ay 3, is the 2nd order R™-valued sub-tensor of A, 3, that consists of the ((i — 1)m + 1)st to (im)th indices in
the output dimension, all indices in the first dimension, and all indices in the second dimension, i = 1, ..., n. In the above, u,
and ), do not appear due to our assumption on their relative degrees.
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We partition X = (X, ..., X,)), with X; being m-dimensional, i = 1, ..., n. The rest of the relevant dynamics for the integrator

backstepping control design are summarized in the following:
sy = (1=K 'sp)(r*¢* = DTr (@,@)) (38¢)
= —(1-K'sp)(*¢* - DZ@ @, T (38d)
= 6(yg, X1, @1, 0, %) + (P, )OE, + hy(P, Z)v (38¢)
M v v v A T, 3 )
X, = fiygXps o, X, 0,0, @, 5) +a;,1 %, + 0,(P, D)0, + (Azfi,z,ie + By uy,
T. T v .
+(A2§';’3’2J.0 + Dy )ty + 1y (0, @, @, X)v; i=1,...,r—1 (38f)

%= G X o %, 0,8, @, ) 4 a4 %y + 0, (D, D0E, + (A) 0+ By Ju,

> 211,2,r
T, X ~ v T, x T, X ~ v x
Ay 5, 04 Dy by + (A 0+ Bu, + (A, 0+ Dy )by + h,(0,®,,®,, D) (382)

- M-

where A, 5 ; is the 2nd order R™-valued sub-tensor of A,; 5 that consists of the ((i — 1)m + 1)st to (im)th indices in the
output dimension, all indices in the first dimension, and all indices in the second dimension, i = 1, ..., n; E’b’i is the m X (p — m)
dimensional submatrix of éb that consists of the (m(i — 1) + 1)st to (mi)th rows, i = 1,...,n; DN is the m X ¢, dimensional
submatrix of D2 that consists of the (m(i — 1) + 1)st to (mi)throws, i =1, ...,n; Eu is the m X ¢, dimensional submatrix of 131
that consists of the (m(i — 1) + 1)st to (mi)th rows, i = 1, ..., n; the nonlinear functions @, hy, f;, 0;, h; and 6 are C_, as long as
0€0®, sy €R,,andZ €S, .

Toward applying the integrator backstepping procedure to the above system, we first observe that sy, X, and 6 are always
bounded by the particular choice of the identifier. The system structure allows the integrator backstepping from the output X, —y,
to step back to X,, ..., X,, and then step back to the control input u,. The inputs u,, are unstructured, and cannot be used in this
process, and will be set to 0,,_,,. The input & (or éc to be precise) has nonnegative weighting in the cost function, which can not be
used in the backstepping process, and &, will be set to 0., ,,,,. The choices of u, and £, will be determined after the upper bound
of the value function for the closed-loop system has been obtained to further assist the stabilization and disturbance attenuation
objective. Thus, the backstepping procedure can only stabilize rm states. We will carry out the control design as if they were
bounded, and prove later that they are indeed so under the derived control law.

Based on the equivalent form (34) of the cost function, or the expression (33)) for the total derivative of W, we need only
achieve 0 level of disturbance attenuation with respect to w0, y level of disturbance attenuation with respect to w,, and y¢
level of disturbance attenuation with respect to the equivalent disturbance v. Note that 0, does not appear in (38) except in X,
dynamics (38g). Then, the effect of 10, on X, can be cancelled out entirely by the control input u,. The measured disturbance
input i, enters (38) before u, enters the dynamics. This means that tb, must be attenuated like v in the control design. The main
backstepping lemma we will apply at each of the r + 1 steps is Lemma[6] or Lemmal[7] both of Appendix [Bl
Step 0: Due to robustness concerns, not related to the objectives of this paper, we will include this step in the backstepping
design. Introduce the dynamics

0= Ani+y—yg 7(0) =0, (39)

where 7 is an m-dimensional additional state variable, 4,, € R_ is a design parameter chosen as 4,, &# max(Re (A(A fl) )) eR_,
where A(A /) denotes the eigenvalues of A ;. Then, we have il = 4,0 + X, — y, + v. There exist positive-definite matrices
Z,Y € S, ,, (which may or may not be chosen as diagonal matrices) such that

1

ZAmZ + @ZZ + Y = Ome (4’0)
Then, if we choose the value function V, = |7 |ZZ, we have
. 1 2L .
Vo=7C ol =v*¢ o — 55 Zii| —|7ly + 207 Z(x, = y,) (41)
r<¢

Then, the desired virtual control law for X, is y,.
We will now distinguish two exhaustive and mutually exclusive cases: r = 1 and r > 1. First, consider the case r > 1.
Step 1: Define z; := X, — y,. To apply Lemmal6l (or Lemmal[7] for a much simplified controller), we identify

Xlo :=(yd’é’z’sz’ﬁ)_’xa; Xla

o —=k; D,:=R"x0,xS,, xR, xR"->D,; D,:=R"-> D, D, =R"XR"™ - D,
W-7, R"->1U Dw2=]R‘72+m—>Dw; 2+§2|U|2—’”(1'Z)2,U)”%N; D,,xDy; - D,

=X, - X, de:=(y§l),d>l)—>xd; X, = u; (W, 0) > w

W,
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and

Choose two C,, mappings ¥,

Xig :=Dyg = Xy5 (O

¢’ ’4”

1
)

=5 Z7) = 0,5

8(yg. %1, ®,,6,%)

Ya = Xy;

il =1 W=

D, Rl llyw) =W

—(1 - K 'sp)(?¢* = DZ® T | € R"XR XS, x RxR" =: X}, - X,
(1= K 1sp)(r?¢ = 1) Tr(@, @)
Anfi + X1 — vy
0, +m)
0,5, Mo(®1. %)
0, 5(G,-4+m) B (W,X,,)
01><(1i2+m)
0m><zi2 Im

fa < f1(yd’561,é,(b1,¢1,2) eR"=:X,,- X,
& < a1,21m €B (]Rm’xla)

|

TZ.I

A21 1,3,2,1

: (:)pu - S, ,,and j

:®pu—>5

0+ Dy 1y(0,0,0,9) | € B(W,X,,)

+m>

Next, in the application of Lemmal6] we make the following substitutions.

Then, V| =

where [,

V0+|Zl| @V

4

n-—Z

V(X,,, X,;) € Dy, X Dy, ¥X,, € Dy,, ¥(iby,v) € D,,
. DIOXDIaXDId —)R_+and\_/1

U+ Bz = V=V,
: D, XDy, —>]R+,anda1

a —a

20,5 |2 242 2 20 (,% -2
Y= (X6 XX 1g) = _II(XIO’Xla’de)+y |w2| T g |U| -7 |(M]2’U)_V1 |[ I,
)

~ 12 2 2
17ily + ]z +]|2 |ﬂ1(5> >0,V(X,,, Xy, X;4) € Dy, x D, xD,,.
If X, had been the actual control input, then we would have used the following virtual control law: X, = a;(X,, X, X;4) to
guarantee the dissipation inequality with supply rate:

—|’V‘1—yd|2—|’7|2y—|Zl|§l(é>+7/2|’1’2|2+V2‘52|U|2

This completes this step of the backstepping design.

0 N

D,,x D, xD,; — R" are smooth and such that

0 5
-1

where ©, is an arbitrary open set in R” that®, >0, > 0,.

: Dy, XD, xD;; = W are smooth and appropriately defined; /,(X,,, X,. X;4) =

Step i, 1 < i < r: We inductively assume that we have completed i — 1 steps of the backstepping procedure, and obtained

X0
D

x O 1
= (y;,0,2, sz,n,xl,y;),él,

Jjo *

X
R"X0,x S, , xR, XxXR"XR"XR" X R™’ x -+ x R" x R" x R™“;
X5 . - =R" j=1,...,i—1

OV,@); Dy =R"XR™%  j=1,..,i-1
D;,xD;,XxD;; —» R"™; j=1..,i-1

®pu—>5+m; j=1,...,i—1

D, 1, XD 1, XD;_14 =W

%= X X Xjorg)s = 1ei—]

@)pa—»sm, j=1,...,i-1

|7]|Z+Z’ (0) Vioi i Diyy X Dpyy = Ry

Whe, ) j=1..0-1

(42a)
(42b)
(42¢)
(42d)
(42¢)
(42f)
(42¢g)
(42h)
(42i)

(42))
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Vi—l |;c,=a,_l(x,_1o,X,_la,X,_ld) Loy(Xisioo X1 Xiz1a) +7 |w2| +y C |U| -y |(w2,u) Vi1 | 0 5
o]
V(Xl lo° 1 ld)EDI lUXDI 1d» VXI laEDI la> V(IZ)Z’U)EDW (42k)
where the nonlinear functions « i B, and Y J = 1,...,i—1,V,_,,l,_;, and V,_, are smooth on their domains of definition; and

XDj_i4-

i—-lo>“i—-la> i—lo i—la

2 . i—1

Lot (Xt Xii o Xi1a) 2| 24 | +|’7|%/+Zl | |ﬂ() 0,V(X,_ 10 Xi_140:Xi_10) €Dy, XD,

At the current step i, we again apply Lemma 6] (or Lemmal7] for a much simplified controller). Toward that end, introduce
zi =% = (Xi 0o Xi100 Xic1a) 43)

and make the following substitution to apply Lemma 6l
(Xl lo>
D,, _D, 10 XD _1,XD;,_1,—» D,; D, :=R"—> D, (wz,u) - w; D, :=R"XR™° - D,
. 2
D, Dy || + 0P = |@n0)|5y; DiwXDy— Dz W—W;, X, :=Dy — X,

XistoXis1a) = Xo3 Xjg 1=% 2 X3 (y(l)

ia (I)l) = Xg5 Xipp U

R" > W Vi, =V: Viy—=os o= Li—=1l; o—k
and
foStepi—l
L+ X
fo < Josepi y(§aSlepl o EXil1o X XL X Xijg =1 Xjp = X,
d
Q1) Pr+ai_1 Py + - +a O+ Ay Xy
hoSlepi—l
h .
ho - OaStepz—l cB (W, xio)
mX(g,+m)
| Asi132,-1 Azl
fo e [i(3gXyson X,0,0,, @, ) eR" =: X, » X,
8a < ai,i+llm €B (Rm’x )
T.
hy < | Ay, 0+ Doy h(0,0,@,%) | €B(W.X,,)
Note that

0o = (yd,é, 2, stﬁ,)vcl,}’fil),él, s X1 y(l b @;y)
Choose two C, mappings y; : 6 , = Siyandf; 6 5, — Sy, Next, in the application of Lemmal6] (or Lemma[7), we make
the following substitutions:

vi—=Z;, Bzi—=>d¢; Vi=>V, a-a

1

Then, V, =V,_, + |z | oy Vi1 Dig XDy, — R,,and a, : D,, x D,, X D,; = R" are smooth and such that

47

. 20 .~ 12 242 2 2 - .
Vi |3<,+,=a,(xm,xm,)(, ) —1i(Xigr Xig» Xig) +7 | W, | +r ¢ ol” -y |(w2, v) - | ol
0 N!

V(X,,. X)) € D,, X Dy, ¥X,, € D,,, V(ihy,v) € D,,

io> za’
where I, : D,y xD,, xD;; — ]RJr and V; . D;, X D,;, X D;; — W are smooth and appropriately defined; /,(X,, X;,, X;;) >
) o ) . 2
1 1(X, 109X1 la° , 1d)+|z|ﬂ(9)>|rlly+|zll +2; 1| |ﬂ( >0V(X10’ ia’ ld)ED XDaxDid'
If X;,, is the actual control variable, we can choose the followmg virtual control law X, ; = «;, which then guarantees the

dissipation inequality with a supply rate of

i
2
=15 vl =1l = Y|, g+ 7 [+ 0P
Jj=1 /

This completes this step of the backstepping design.
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Step r: Define
Z, ::%r_ar—l(Xr—ler—la’Xr—ld) (44)

Make use of Lemma [6] (or Lemma [7] for a simplified controller) to design the control function for u, by making the following
substitutions:

_(Xr—lo’Xr—la’Xr—ld)_)xo; Xra ::%r_)xa; (I’bZ’U)_) w; U, = u
) - . . .
X,y (y(r D % X Dy, @, 0) > x,; D,,:=R"—>D,; D,— D,
. v |2 21,12 ¥ 2,
D,, =D, |,XD,_ |, XD, ;= Dy; ||+ |v|° = ||, 0)|3g: W—->W

D,; := R"xR™° x R""m x R x RS — D,; D, ,xD,;, = D;; V,_, =V,

m . = . . . . P
R" — u’ Vil = 0 O] = Ay lr—l - la’ 0 = k’ xrd c Drd - xd

and
Sostep r-1 )
£, < Sastep r—1 -;(rg)aSlepr—lxr €N XX XXy =i X, = X,
d
| Q11 @+ G p Py + o+ a Pt Agyy g, Xy
| o siep r-1
h, < :)laSlevp r—1 cB (W, xro)
mx(dy+m)
| A211,3,2,r—1 A1 11
fo e LG0T %0 0.0, 0, 5) 4 4, %y + (A 0+ Dy )iy € R =2 X, > X,
g, « Ay 0+ B, eB(R’" X, )
h, < [Af?;’&z’rmbz,, h,(é,cpl,(b,,z)] €B(W,X,,)
Note that

3 ¢ -1

:(yd’9329s29’79x19y51)9q)19~~9 r_pyi; )9(Dr—1)
and Azié 0+B, = Bpo(é) is invertible since § € ©,. Choose two C,, mappings 7, : épo - S, and g, : @)pa - S, .- Next, in
the application of Lemmal[6] (or Lemmal[7]), we make the following substitutions:

v=2%Zy Bz.—= ¢ V.oV ou,—a

Then, V, =V, | + |z, | V.: D, xD,, - R,,and y, : D,,x D,, x D,; - R™ are smooth and such that

7,.6)

ro>“*ra>

. v 12 2 v - 12 .
Vr|uu—/4a(X X, X) I(Xro’ ra’er)+y2|w2| +J/2€2|U| _yzl(wz,l))—vrl I. 0 5
a2
0 N-!

V(X er) € Dro X Drd’ V)(ra ra’ V(I’UZ’ U) € D

ro°

where !, : D,,XD,, XD,; = ]R_Jr and v, : D,, X D,,x D,; - W are smooth and appropriately defined; /,(X,,. X,,» X,4) =
) - 2

lr I(Xr lo’Xr la’Xr ld)+|z |ﬂ(é)>|’7|Y |Z1| +Zj 1’ ’ ( >OV( ro® ra’er)eDrOXDraXDrd

Hence, we have completed the design of the control function for u,

U, = #a(Xra’Xra’X ) 45
2
The corresponding upper bound of the value functionis V' =V, = |7 |2 7+ Z; . ‘ ’ o
v
This completes the backstepping design procedure for the case » > 1.
Next, we consider the case of r = 1.
Step 1: Define the transformed variable
Zy =X =Yy (46)

To apply Lemmal6] (or Lemma [7] for a computationally simplified controller), we make the following substitutions:

X, = (4.0,%, 55,7 = x,;, R"=U; D, :=R"- D, |LD2|2+C2IU|2—>||(11)2,U)||%N
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X =00, @,%,,...,%,, @), ..., 0,,0) > x;; D, :=R"X0,xS,, xR, xR" > D,
D, :=R"XR™ x R" D" x RV x RS —» D3 W i= (D, R, |- llyw) > W

7 1 ~ ~
w =R S D Vg5V 04, =5Zi) > 0,0 yg > il — i Dy XDy~ Dy

X, =% = x5 u,»>u; (,v)->w;, -k X,;:=D,;—->X,
and
_ yS)
8(yy, X, ®@,,6,%)
fo < | (=K% - DE®/®,5 | € R" X R7x S, x RXR" =: X}, > X,
(1 - K 'sp) (26 - 1) Tr(®, @)
| Anli + X1 — vy
Omx(tiz+m)
0,5, Mo(®1. %)
ho <1 Ooxoxigym) B (W,X,,)
01><(ziz+m)
L
fo = [i00%1,0,®,,®,5) +a,,% + (A, 0+ D, i, e R" =: X, - X,

211,3,1,1

T
8, < 23;19+Bl €B(R",X,,)

ha - [A2113219+b2,l hl(é’q)l’q)l’z)] eB(\/v’xla)

Note that Azg 19 + B, = BPO(H) is invertible since # € ®,. Choose two C,, mappings 7, : (:)pa - S, ,and p : (:)pu - S, .

Next, in the application of Lemmal[6] (or Lemmal[7]), we make the following substitutions:
71—>Z, (Im+ﬂ1)zl_>¢9 I/l_)V7 /’la_)a

Then, V; =V + | z, |§1<§>’ V, : D,,xD,, = R,,and y, : D,, x D,, X D;; = R™ are smooth and such that

a2

v 12 2 v - 12 .
Y U =Hy(X 16, X 14X 1) = _ll(Xl”’ Xl”’de) + yz |I/U2 | + y2§2 IUI - yz |(w2’ U) g | 1. 0 ’
0 NI

V(X,,.X,,) € D,, XDy, VX,, € D,,, V(ib,,v) € D,

where !, : D, XD,,XD,; = R_+ and v, : D;,XD,, X D,; = W are smooth and appropriately defined; /,(X,, X,,, X;4) =
~12 2 2
17ily + 121"+ |2 |ﬂl(é) 2 0,V(X 4, X145, X14) €Dy, XDy, XDy
Hence, we have completed the design of the control function for u,:

u, = (X, X

ro’ ra®

X,,) 47

The corresponding upper bound of the value functionis V =V, = |7 2 o+ |z1 |§1 @
This completes the backstepping procedure for this case.

In summary, for both cases, we have obtained X ;,, X; X4, D.,D. Djd, Yt (:)pa - S, ﬂj : épo - S, !

m> tj

Jjo> ja Jjo’ ja
DijDjaxDjd_—»R+,j_1 sk a; 1 Dy, X D; XDjd—>]R,_]=1 r—l,\7 : DXD,,XD,; = W,
V .:D,xD,,— R, and y, : Dmemerd - R’" suchthat aj,yj,and pi.j= -1,v,,1,,V,and u, are smooth and

|11|Z+Z’x —a;

7,0)

with

/ 210 12 2221912 — 2 | (F -2 .
v XXy = X Xoa X, ) + 72 [0 |+ 28 0] —y |(w2»U)_Vr|[1 0 ]

Y(X,, X,;) € D,, X D,;, VX,, € D,,, Y(tb,,v) € R



Z.PAN and T. BASAR | 19

2
and (X, X,go X,0) 2 17115+ %1 = vy |2+Z;=1 ‘ Xj=a; (X100 Xj 100 Xjo14) 5.6 2 0,V(X,,, X
In the following, the control input u, will always be set to 4,(X,,, X,4. X,4)- '

Now that the (upper bound of the) value function for the control design has been chosen, we can optimize the choices for the
controls u, and &,. Based on the dynamics for the observer (7)), these signals enter the system in an affine manner. When, &,

and u, are not vanishing, the derivative of V" is given by

er) € DroXDraXDra"

ra’

. v 12 = v - 12
Vo= —1(Xy X X, ) + 77 [ |+ 128 |01 + JOE + gy — v [ (D0, 0) = ¥, |,

4 0 ’
0 N!

V(Lbz, U) c Rli2+m, Vub c ]Rp—m’ Véc c ]an+6

V(X,,.X,,) €D, xD,; VX, €D

ro’ ra’

where ¢, : D,, X D,, x D,;, - R and ¢, : D, x D,, —» RP™ are smooth and appropriately defined, X,;, :=

(@, %ppgseves Xy @pygs e, @) € D,y 1= R™C x RTIM 5 RO,
The closed-loop system admits the state vector
X 1= (%50, %, X,00 Xygo @y X1 ooe s X @ oo s @) = (X5 0, %, X s Xgr Xy) (48)
which belongs to the set
D:={X|ZES+U,szeR+,ée®o,Oe®o} (49)

The (upper bound of the) value function for the closed-loop system is
) 51? 2 y e PR 2
U:=V+W= |9 - 9|271 +y |x —X -0 - 9)|H71 +17% + Z‘f |x, - aj_l(Xj_lo,X,_la,Xj_ld)|y/(é) (50)
i=

which is the sum of (upper bounds of) the value functions for the identification design and control design, leadingtoU : D — ]R_Jr
being smooth. The derivative of this value function along the solution of the closed-loop dynamics is given by
2

U +2(0 - 0 P(0) + | &, |5 + 6LOE. + cjuy — 1,

—1ATT-!

2 4 ~ A |2
b=l =g -0 -],

—e(y2§2—1)|9—é|

a2

2
2 201y |2 2 2 2 v 2 21,y _ 2
+Hz [ 7 @]+ w, | -y |wb—w*(”5[o,r]’y[0,r1’”[o,r]’w[o,rl’yd[o,r]’é[o,r])| - @0 =V,
0 &1,

~ 12 A12 v «
—|x =y -7 |x Y 9)|H_1An_l — (22 - 1) |9 - 9|®C’C¢ +200-0YP0) + & +¢./25 — | ¢ |5 /4

ey — 1+ |z, [+ 72

22)

)

opt

VX €D, V) e R", VE e R™*"™, Yw, € R™, Vib, € R", Vib, € R%, Vu, € R (51)

2+Y2|wb|2_3’2|(w2’wb)—w

where the worst-case disturbance with respect to the value function U is given by
w Iy 0 oy 0,
= Vv - < v
X0 ENTUL Ty, — EENTIE)D'ETNE -8 + E'NTIC(X — )
The choice for u,, is to generate an additional negative drift for U while the magnitude of u;, remains bounded, since u,, enters
the unknown system directly. A possible choice for u, is

(52)

u, = — SATF(¢,) = p,(X

ro’

X,,) (53)

where SATF is the smooth saturation function (see Definition[d)) that applies element-wise on the vector ¢,, with each element

given a possibly different saturation level ,, e R,,i=1,...,p—m.
The optimal choice for the variable &, is £,, = —¢, /2, or equivalently, the optimal choice for the worst-case estimate Eis
EXp Xy X )= 8= ¢,/2 (54)

This control design yields that the closed-loop system is dissipative with storage function U and supply rate

—|x1—yd|2+y2|wb|2+y2 :

22)

This optimal choice for &, (34)), results in the first proposed adaptive control law.
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The optimal choice of &, is generally quite complicated, and leads to an identifier that is very different from the standard

identifiers, such as least squares or least mean squares identifiers. On the other hand, the simple choice of £, = 0 i.e.,

o+nm?

£=¢ (55)
results in a simplified identifier structure, which resembles the standard identifiers. In practical situations, this suboptimal choice
of € may be preferable over the optimal one (54). This suboptimal choice of & results in the second proposed adaptive control law.

This completes the adaptive controller design step. Next, we turn to study the robustness and tracking properties of the
proposed adaptive control laws.

6 | MAIN RESULT

In this section, we present the main result of this paper by stating a theorem and a corollary on the robustness and tracking
properties of the two proposed adaptive control laws.
For the first adaptive control law (with the optimal choice of €), the closed-loop system dynamics are

= F(X, ", ) + G(X) [ZZ

F(X,y" +GX[?U%]; X(00) =X 56
b] K+ GO | )= X (56)

where F and G are smooth mappings on D X R™ x R% and D, respectively; and
X, €D, = {X,€D ‘ 0€0,b,€0, =(0)=y20;" €S,,, Tr((EO)") <K
52(0) =72 Tr (Qy) , T(x;(0),x,(0), ..., x,(0) € D, }
Since (31)) holds, then, by Lemma[E]of Appendix[Bl the value function U satisfies the following Hamilton-Jacobi-Isaacs equation:

—(X)F(X »w, W)+ 5 H_(X)G(X) +0(X, )y, w)=0; VXeD, vy eR, Vi, e RY (57)

Ré2+map
where Q : D x R” x R% — R is smooth and given by

~ 12
OX.y i) =[x = yg[ 47 |x =200 - 0)| +aﬁ¢—1ﬂe—

~1ATT-! D'C'CD
—2(9—9)’P,(9)+|g,|Q/4+l(Xm, o Xe) = 20 [P = 6oy
2 4 A A 242
o [y e _
> |x; = y| +7r ‘x 2 — @6 - 0) HJAHIH(”C 1)’9 9’¢/C’Cd>

- €1:/4b

=20 -0y PO) + |, |5 /A + 11+ |zj |ﬂ(é)
Jj=1 I

Clearly, Q is nonnegative, VX € D with 6 € ©.

Since the value function U is not a positive-definite function for the entire closed-loop system state X, we cannot deduce
stability properties of the closed-loop system directly from the value function U. As it turns out, the closed-loop adaptive system
possesses a strong stability property: all closed-loop signals remain bounded under bounded disturbance wyq ., € Wd and the

initial condition X, € ﬁo and bounded reference trajectory together with its derivatives up to rth order, in addition to the above
stated attenuation (dissipation) property. This is made precise in the following theorem.

Remark 1. Assumptions [I]-[8 are standard as in the SISO case [5].

Theorem 1. Consider the robust adaptive control problem formulated in Section[3] with Assumptions[I]-[Blholding. Then, the
robust adaptive controller i given by @3) (or @7)) and (33), with the worst-case estimate & generated by the optimal policy
(54D, achieves the following strong robustness properties for the closed-loop system.

1. Givenc,, € R_Jr and ¢, € R_+, there exists a constant ¢, € ]R_Jr and a compact set ®, C ©, such that for any uncertainty

quadruple (X, 0, Wy o) yij?o’w)) € W with

| %0| S cui %o € Dy |W(M)| < ¢ Wige) € Wy | Y] S ¢ Vvt € [0, )
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all closed-loop state variables x;, x, X, é, 285, 0, @, Ay i =1, o om Ay, i =1, ., p—m, Ay 0 = 1, ...,4;, s
i=1,...,4,, and 4, exist and are bounded as follows, Vt € R :

| %0 < e |x®] <e.. XD <c. 61)€B, |iD|<c, PO <c,,
K'I, <20 <y?Q;", 7*Tr(Qy) <ssM <K, [4D]|<c. |m®]|<c [da@®]|<cni=1....m,
|| < ci=1..,p—m, |40 <c..i=1...4, |iy®]<c,i=1..,4.

Therefore, there is a compact set .S C D such that X (¥) € S, Vt € R. +- Hence, there exists a constant ¢, € R_+ such that
lu(t)| < c, and ’é(t)‘ <c,VteR,.

2. The controller u belongs to M and achieves disturbance attenuation level O with respect to 0, and disturbance attenuation

level y with respect to ), and wj, for any uncertainty quadruple (%, 0, 1) ), yfirio Dc)) eW.

3. For any uncertainty quadruple (%, 0, tg o), yij?o ) € W with @),y € Legs Wijg.00) € Ly NLegs Wi,y € Ly N L, and
Yi10.00) € L., the output of the system x, asymptotically tracks the reference trajectory y,, i.e.,

im (x, (1) = y4(1) = 0

Proof. We consider the first statement. Fix an uncertainty quadruple (%, 0, Wy o) yi;io c’o)) € W with
| %0| S cui X € Dys  |W(1)| < ¢ Wige) € Wy | Yy(D] S ¢ vt € [0, )

for some ¢, € R, and ¢, € R,. With the controller x and & designed, we have a fixed initial condition X,, € D, for the closed-
loop system (56). Consider the maximal interval [0, T;) where the differential equation (56) for the closed-loop system admits
a solution that lies in D, which is clearly an open set. Then, by the smoothness of the system, the solution X (¢) is unique on
[0, 7). Note that the maximal length of the interval, T';, may depend on the specific waveform for the disturbance wy, ., and
the reference y ’ [0 We will show that the maximal length of the interval, T, is always oo.

By LemmalT] the covariance matrix X and the signal sy are uniformly upper bounded and uniformly bounded away from 0, as
depicted in the first statement of the theorem. By Proposition[3] = and sy, are inside compact subsets of S, , and R, respectively.
The reference trajectory and its derivatives up to rth order are uniformly bounded since | Y, () | <y, VE20.

Define the vector of variables

=(0.% - ®0,7,z,,...,z2,)
Clearly, X, : [0,T) — D, := 0, X R™ x R™ x R™, and the function U can be written as U = U(z, X, (1)), where
U : [0, Tf) XD, = ]R_Jr Under the assumption that  is uniformly bounded on [0, o), we have the following inequality for the
derivative of U:

U < YA‘x—x—d)(H 9)’H1H1—€(7/C —1)’9— LD,C,C(I,
+2<9—é>’P,<é>—|ﬁ|§—Z\z,\;(g)—lalé/‘lﬂz [131\04] zci
=-|e- §| +2(0 - 0) P.(O) - 7]}, - Z| |W A—V2Q+Ei,
=__|§ §| +2(0 -6 P(0) - |71l - Z| M)—%|2§—§—g|2_+ci
< 25— O + 20— 0Y BO) — |72 — Zl, Bl
i )
where ¢, 1= yc, [Igz ]3[] . Note that ﬂj : (:)pu - S, ,, is smooth, then Elcﬂj € R, such that ﬂj(é) > cﬂjlm,j =1,...,r,

Vo e 0, D ©,. Then, there exists a compact set ,(c,,) C D, such that, V7 € [0,T)), if X, € D, \ Q,(c,,) then U < 0. Note
that since vt ®pu - S, is smooth, Elcyl_m,cij € R, such that cyjmlm < yj(é) < CijIm’j =1,...,r,¥0 e ®pu D0O,. Let

U, (X, =K,

.
2 2
5 2|~ 512 ~ 12
_ +y |x—(D9|H,1+|n|Z+chjM‘zj‘
=1
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2 . 2
U, (X,) := 7 |9—é|QU + 72 | %= DO + 1AL+ Y e, |zj|
j=1
Then, clearly U,(X,) < U(1,X,) < Up(X,), Vt € [0,T), VX, € D, = ©, x R™*"*"" By Lemma 3 of Appendix[Al there
exists a constant ¢, € ]R_Jr such that U, (X, (1)) < ¢;, Vt € [0, T}).

Then, on the interval [0, T f), the vector X, is uniformly bounded. Hence, we have that 6, x—®6, 7 and z, ..., z, are uniformly
bounded. (6 is bounded to begin with, since # € ® and 6 € ©,.)

To further conclude the uniform boundedness of the overall closed-loop system states, we distinguish 3 exhaustive and
mutually exclusive cases: r = 1, r =2, and r > 3. First consider Case 1: r = 1.

Note that the signal 7 is uniformly bounded, and it has uniform vector relative degree 1 with respect to the input y. The linear
system with input y and output 7 is minimum phase with respect to D; = R™ and C according to [1/], where the signal y, is
regarded as disturbance. Then, this signal 77 has uniform vector relative degree r+1 with respect to the input u,,; and the composite
system with states 7 and X, input u,, and output 7 is minimum phase with respect to Dy X ﬁo and C X Wd (by a straightforward
vectorized version of Theorem 1 of [[19]), where the signal y,, u,, and w are regarded as disturbances. It is easy to see that the 7
dynamics with input y and output 7j may serve as a reference system in the application of Proposition 2 of [20] (more precisely,
a straightforward vectorized version of it). The composite system with control input u,, output 77, and disturbance inputs y, and
w, may serve as a reference system in the application of Proposition 2 of [20] (more precisely, a straightforward vectorized
version of it).

We need to conclude the boundedness of the variables @, in three steps. Define

A = (Agits oo dei)s i=1,....m (58a)

b = Apdg+e s A 0)=00i=1,....m (58b)
/

@, =¥, @, (580)

§ 0mr><17><m .

@um = qu)“ax + A Uy, d)um(O) = 0nm><6 (584d)
212,

D, = A,D + Ay ¥+ Ayt + Ay 305 @,(0) = @ (58e)
where A, is a 2nd-order R""™_valued sub-tensor of A,, that consists of the (mr + 1)st to mnth indices in the output
dimension, all indices in the first dimension, and all indices in the second dimension; Acij isascalari=1,...,m,j=1,...,n,
<I>um,- is am X o-matrix, i = 1, ..., n. Then, we have

m
D= (Dy + (I)um + Z(Aci ® Im)AZIZ,r,:,:,i
i=1

The relative degree for each of the elements of ®,  is at least r + 1 with respect to the input u,, and is the output of a stable
linear system. By Proposition 2 of [20], this yields that @, , is uniformly bounded, where the reference system has output 77 and
inputs u,, w,, and y,.

The relative degree for each of the elements of @, is at least 1 with respect to the input y, and is the output of a stable linear
system. By Proposition 2 of [20], this yields that @ is uniformly bounded, where the reference system has output 7 and input
¥, ¥, (Note that & and u,, are uniformly bounded.)

Because X — @4, @, ®, |,and 0 are uniformly bounded, we have that the signal %, — 2:":1 Acil A212,r,:,:,ié =X - (A212,rjcl)§
is uniformly bounded, where 1., := (4.;, ..., A, ). Furthermore, since z; = X; — y,; and y, are uniformly bounded, so is X;.

Let A, 1= (Aps--v» Aep) € R™, where A,; = (A45 -+ » Aei) € R™, i =1, ..., n. Then, 4, satisfies the dynamics

0(r—l)m><m

0(n—r)m><m

We further define /Tc =U,® BPO(G))ZC, where B,(0) = B, + Al

515,80 is the high-frequency gain matrix as defined in
Assumption[3l Then, we have

0
- . _ (r—1)mxm
de =, ® By, =, Q@ By@)A A +| I, |u,)

0(n—r)m>(m
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- 0(r—l)me - 0(r—1)m><m
= A;(I,® By@O)A, + I, ® Bo@)| 1, |ug=A . +| Bo® |u,
0(n—r)m><m 0(n—r)m><m

where we have made use of the structure of A, that it commutes with I, ® B,,(6).
TZ 1

Now a critical observation is that the signal x; — (B, + A,

212, DAt =1 X = By(0)A =1 x| — J,, is generated by the dynamics

- - 0 . .
X—do= A (x— 1)+ l e ] u, + (CPL+TC' (& =y )y — EMw,) + Ay + Byu,

T,
A212,50

! v ™Y SN
+[0,m Bl - B | g+ (Agyy 19+ Ay oty + Ay 30)0 + Db + DM,
X =44 =C(x—21,)
To apply Proposition 2 of [20], the dynamics are separated into y dependent and u dependent parts using the linearity of the
system, X, — A,; =: x,; + x,;- The dynamics of x,; and x, are given by

0r
X, = Apx, + l mxm ] g+ [0y B, - B;]’ua

Agpy 0
X = Cx,
X, = Apx, +(CPL+TC(C* -y )y — EMw,) + Ay + (Ayy 1y + Agyy oty + Ay 3100 + Byu, + Dib+ DM,
x, = Cx,

The signal x,, has relative degree at least r + 1 with respect to u,. It is uniformly bounded by Proposition 2 of [20], where
the reference system has inputs u,, y,;, and w,, and output /7. The signal x, has relative degree at least 1 with respect to
y. It is uniformly bounded by Proposition 2 of [20], where the reference system has inputs y and y,, and output 7. Hence,
x| = B,o(60)4,, is uniformly bounded. It can further be concluded that ¥, — B,o(6)4,; = x; — B,o(0) 4, — (%, — (A;i’;yré)icl) =
x; = By(0)A — (X = (A0, 4:)0) = x; = By(0) 4 — (X} — ®,0) — (CP,0 + D, ,0) is uniformly bounded.

Since X, is bounded, and Bpo(é) is uniformly bounded away from singularity due the be 0,, vVt € [0, Tf), (see Page[10) we
have the uniform boundedness of the signal A.,. This further implies the uniform boundedness of the signal @, and the uniform
boundedness of the signals x; and y because of the boundedness of x; — BI,O(G)}:Cl and w,.

In order to show the existence of a compact set ®, C 6, such that 6(¢) € O, Vt € [0, Tf), define the function

Y :=U+ P©6)(p,— P©O)
Clearly, Y can be written as Y(7) = Y(#, X, (1)), where Y : [0, T)xD, > R_Jr The total time derivative of Y is given by

. . v =2 0P v %
Y =U+p,(p,= PO)  =50)0
2 . o 5|
< = lxi =l -7t ‘x—x—tb(e—@)’mlmil e’ - 1)‘9_9’@00»
v v -2 d 2 1 2 2
+2(0 - 0)P.(0) — |7ily — Zl, |Z,- |ﬂj 7 615 + €
) 0P < 0P x .
+0, (P, = P©O)) | = =5 (O)ZP.0) - —(O)ZP'C'(y, - %))
00 00
1224 (3 20'] 0c, + L (Br2ez0'c/ (5, + ENw,)
2 06 00
Note the following partitioning of the matrix £ and its inverse:
- z pXol =1 T4y ' —y 20T
Y= _ ’ X = 2771 2171
O y 21 + OXP -y @ !

By the special structure of Q prescribed by (23), the following equalities hold:
50 = eXD'C'(y?¢? — 1)CD 0
T | e®ZD'C'(y2E? - 1)CD — y2 AL @ y2 AT



24| Z.PAN and T. BASAR

19P ’ 19dP 1 (a2 72 0P x (Fali 22 ) ]
= = - —-= )z - HCDO -
55O [220/] 0g, = 225(0) [0/ C'GP = DD 0, ] 6, = =52V C'e(y*¢ = 1)CDD - 0)
Therefore,
. A2 " Y d )
Ys—\é—éyQ_+2<9—e>’P,<9>—|ﬁ|§—2\z, ~E[, v

0, (0, = P®) 0. ® | L @) -1, (5, PO) 7 @20/ C, - )

V)zaP

~p, (P, = P() (0)ZD'C'e(r*¢> = 1)CD@ - §) + p, (p, - PO)) ‘Z—g(émzm’c’(xl + EMw,)

IR RPRIPYLIS g P — P Lo 12
<—|e-¢, -3¢ §|Q_+2(9 0y P.0) - 1} _Z|z, S|€-¢,+2
-1 ] -2 0P ol v
~p, K (p, = P(O))” p,(e) —p,, p,—P@))" 5 OZOC (g = %)
~\-2 0P « ~\—2 0P - NN
—p, (p, — P(0)) ﬁ(e)m C’e(y gF=1)CP®@ - 0)+p,(p,— PO)) E(@)yzczZ(D’C’(x1+EMwb)
4 P ;12 ) ) ~ 12 c 2 Lisg x? )
< —p* /4| % = DO}y +200 = 0) P(O) - 1713 - Z E 5" 3107 0 gegpica t
J=
—1 x -2 0P
0K (5= P@) @] SO =5, (5, PO) 7 @20/ C, - 5
v —2 v ~ DPIRN
—p, (p, — P(0)) —(e)m C’e(y &* = 1DHCPO - 0)+p, (p,— PO)) %(H)yZCZZ(D’C’(x1+EMwb)
< =y /4| = DO|L s 200 — 0 PO — 72 — Z|

—po/Kep,(0) (p, - P@)) g(é)‘ + (p, - P@)) ‘ (9)’ 6t e

for some constant ¢, € ]R_Jr This inequality follows from the uniform boundedness of y,, x;, X;, C®, and w,, and a completion
of squares with respect to 6 — . Then, there exists a compact set ,(c,) C D, such that, V¢ € [0, T}), if X, € D, \ Q,(c,) then
Y < 0. Note that, V(z, X,)€l0,T,)xD,,

U, (X)) + PO)p, — PO) ' <Yt X,) < Up(X,) + P(O)p, - P6)™
By Lemmal[3] there exists a constant ¢; € ]R_Jr such that U, (X, (1)) + P(é(t))(pa - PO < ¢35, V1 € [0,T,). Hence, there
exists a compact set ®, C 0, such that é(t) e o, Vre|0, T).

Now, use the true system .S with inputs u, and w, and output x, as the reference system. Without loss of generality, assume
that .S is given in extended zero-dynamics canonical form (EZDCF) (see Lemma 2 or Lemma 3 of [1])

%, = A%, +A, % + D, w, (59a)
% = A%, + % + Dw i=1,...,r—1 (59b)
%, =A%, + A% +Boua +[)e,u‘)e (59¢)
y =% +Euw, (59d)

Then, the entire state vector x is bounded on [0, Tf) by the definition of minimum phase [1] since y is bounded. Then, #;,
i=1...omu,i=1,...,4,%,i=1,..,4¢,4;i=1,...,p—m, and 1, are bounded, since they are some stably filtered
output signals of y or bounded signals. Then, 4,;, i = 1,...,m, are bounded since they are stably filtered signals of u, with
relative degree at least 1 with respect to u,, where the reference system has the output y and input u, and w,, in the application
of the Proposition 2 of [20]. Then, the signal @ is uniformly bounded. Further, x is bounded since it is a part of x. Therefore, X
is uniformly bounded, by the uniform boundedness of X — 4.

The preceding analysis then leads to the conclusion that there exists a compact set .S C D such that X(r) € S, Vt € [0,T f).
Thus, we conclude that T, = +co. This further implies that the control inputs « and ¢ are uniformly bounded. This establishes

the first statement in this case.
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Case 2: r = 2. In this case, using the same arguments as in the first eleven paragraphs in Case 1, we may conclude the
boundedness of 7, @, @, |, X|, x| — BPO(G)ZH, A.1, @, x;,and y, on [0, T'), and the existence of a compact set ©, C 0, such
that 0(r) € ©,, Vi € [0, T).

Note that X,,, X,,, and X, are inside compact subsets of their domains D,,, D,,, and D), respectively. Then, the virtual
control signal &(X,,, X,,, X,,) is uniformly bounded. Now, use the true system with inputs u, and w, and output x; as the
reference system as in EZDCF (59). By [1]], %, is bounded since y is bounded. The signal x; = %, is minimum phase with respect
to ﬁo and Wd, and admits uniform vector relative degree r with respect to the input u,. By a similar bounding analysis as the
one in the second through eighth paragraphs in Case 1, we can deduce the uniform boundedness of signals @, ;, X, — ®,0, %,,
Xy = B,o(0) s, Aeyr @y, and x,. ) ) )

Note that x; = % and X; = A ;x| +a;,%, + By ju, + Djw = A X + %, + D, w,. By the preceding analysis, we have that
X, is bounded on [0, 7). Using the true system (59) as reference system, with x, and x, being bounded, we can conclude that
stably filtered signals of u, with relative degree at least r — 1 = 1 are bounded. Thus, using the same arguments as in the last
two paragraphs in Case 1, we can prove statement 1 in this case.

Case 3: r > 3. In this case, by the same arguments as in the first eleven paragraphs in Case 1, we may conclude the boundedness
of 7, ®,, @, |, X, x;— B,y(0)A.1» A.1» @1, x;, and y, on [0, T;), and the existence of a compact set ®, C ©, such that 0 o,
Vi €[0,T)).

Now, using the same arguments as in the second paragraph in Case 2, we may conclude the boundedness of @, ,, X, — ®,0,
Xy, Xy — BPO(H)ZQ, Aers @5, and x,, on [0, Ty).

By the same arguments as in the third paragraph in Case 2, we have that %, of the true system (59) is bounded and (39) may
serve as the reference system in the application of Proposition 2 of [20] to conclude the boundedness of outputs of stable systems
with relative degree r, > r — 1 with respect to the input u,.

By aline of reasoning that is similar to the one in the second paragraph in Case 2, we can conclude the boundedness of @, 3,
X3 — @30, X3, X3 — By(0) 3. A3, ©3, and x5, on [0, T).

It is easy to see that we may conclude the boundedness of %5 in (39). Inductively, we can conclude the boundedness of X,,
Aegr Xgo +-vs Xy Ay and x, on [0, T).

By a line of reasoning that is similar to the one in the last two paragraphs in Case 1, we can prove statement 1 in this case.

Thus, we have established statement 1 in all three cases. This completes the proof of statement 1.

Next, we prove the second statement. Fix any uncertainty quadruple (X, 6, W) ) yf;)[o’oo)) € W. For any ¢ 7 2 0, there exist
constants ¢,, > 0 and ¢, > 0 such that < ey W] < ¢, and |Yy(0)| < ¢y, VE € [0, 1], since w and Y, are continuous.
By the first statement and the causality of the closed-loop system, there exists a solution X : [0,7,] — D for the closed-loop
system. Hence, the closed-loop system (56) admits a unique solution on [0, co). This further implies that the proposed adaptive
control law belongs to M. Choose

%o

A |2 A2
10,0, Xp0.1: Y01 W Yaro) =7 [x =5 =00 =D)| | +e(? - 1]0-0)

=20 - 0Y PO + ¢ |g /4+1,— 20" = chy

'C'CD

\%

12 12 . . d
v x—fc—(b(e—e)’mlm]+e(y252—1)ye—e‘qwcq)—2(9—9)’P,(9)+|g,|g/4+|ﬁ|§+2‘zj
=1

2 /
ﬂ/(é) - gbﬂb
ly = V(X,,(0), X,,(0))

The function / is clearly nonnegative as long as X (f) € D with 8 € ©, which is guaranteed by the first statement. Then, we have

o
Ty = J},l/+/0 Udr+U@©0)-U(t,) < ~U(t,) <0

4

This shows that the controller x4, with the optimal choice &,, achieves the disturbance attenuation level 0 with respect to 0, and
disturbance attenuation level y with respect to b, and w, as prescribed by Definition[Il This establishes the second statement.
) Laft, we prove thft thir_d statement. For any uncertainty quadruple (X, 8, Wg s yiir)[O,oo)) € W with W1[0.00) € L., Wy0.00) €
L, NLes Wyo00) €Ly NL, and Y, ) € L, we have statements 1 and 2 hold. Then,

(o] o0 N 2
/ lx,(t) — y,(0)>dt <U©0) + yz/ (| Mwb(t)| + |, (1) |2)dt < +00
0 0
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by the dissipation inequality (31) and the second statement. This implies that x, — y, € L, on the interval [0, c0). By the first
statement, we have that X, — y,; € Lw on the interval [0, 00). Therefore,

lim (x, (1) = y4(1) = 0
This completes the proof of the theorem. O

Consider the second adaptive control law where the choice for £ is the suboptimal one. The closed-loop system dynamics are

= F(X, )7, ) + G(X) ["’2] FX, Y7, ) + GX) [ w2 ] . X(0) =X, (60)
w, Muw,

where F is a smooth mappings of D x R™ x R% and G is defined as in (36). Again, X, € D,. Consider the value function

U defined by (30), whose derivative is given by (31)), where the two terms involving ¢, vanish since & = . By Lemma [ of

Appendix[Bl the value function U satisfies the following Hamilton-Jacobi-Isaacs equation:

—(X)F(X ¥, w D)+ 7 H—( GO 0.y ) =0; VX eD, ¥y eR", Vi, eR%  (6])

qu+mqb
where O : Dx R” x R — R is smooth and given by

v 12
OX, ¥, iby) = |x, = yg | +7* ‘x—fc—cb(e—e)’ g @ =10 -0 LWC‘D
~2(0 = 0) P.(O) + 1,(X,ps X,00 Xo) — | 21 |* = Sty

Z|X1_)’d|2+y4|x_)vc_q)(0_9)| IA—+€(}/2€2_1)|9_ |‘D'C'C¢

=200 - §) B,0) + |n|y+2\ Gy

I 1p,8)

Clearly, Q is nonnegative VX € D with 6 € ©.
This now leads to the following corollary to Theorem[Il

Corollary 1. Consider the robust adaptive control problem formulated in Section 3] under the same assumptions as those of
Theorem[Il Then, the same results of Theorem[Ilhold for the robust adaptive controller u given by @3) (or 7)) and (33), with
the worst-case estimate & generated by the suboptimal policy (33).

Proof. The proof follows essentially the same line of reasoning as that of Theorem[Il except one modification.

Following the same line of reasoning as in the first five paragraphs in the proof for Theorem[Il we may conclude that ¥ and
sy are bounded as desired, Y, and X, are uniformly bounded on [0, T f), which is the maximum length interval such that (60)
admits a solution. We again distinguish between three exhaustive cases. Case 1: r = 1. Following the same line of arguments as
in the first eight paragraphs in the Case 1 of the proof of Theorem[] it can be concluded that 7, d>y, () X, x| — BPO(H)/TC1 s
Acr> @y, x;, and y are bounded on [0, Tf).

To show the existence of the compact set ®, C ©,, we consider the total time derivative of the function P(é)(pa - P(O) "

u, 12

Q 0 _ pon-1) — _"_2 _a_PV V_a_PV reles,
dt(P(H)(pg PO)™") =p,(p, - P©)) ( ag(H)ZPr(H) 69(9)2<I>C(yd X)

+‘3—§(é)y2§22¢’c’(x1 +EM 12))>

< =0,/ K2, @ (0, ~ PO) | 2@ | + (5,- P®) | 2@ s+ ey

for some constant ¢, € R_Jr By Lemmal[3] there exists a constant ¢5 € ]RJr such that P(H(t))(po - PO~ < ¢s, V1 € [0,T)).
Then, there exists a compact set ®, C ©, such that 6(¢) € ©, on this maximum length interval.

By a line of reasoning that is the same as in the last two paragraphs in Case 1 of the proof of Theorem [I] statement 1 is
established in this case.

Case 2: r = 2 and Case 3: r > 3 can be similarly handled as those in the proof of Theorem [I] with the above modified proof
for the fact that é(t) €0.CcO,Vte[0,T f). This completes the proof for statement 1.
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By a line of reasoning that is similar to that of the proof of Theorem[I] we conclude that the adaptive controller @3)) (or (47))
and (33), with the suboptimal policy & = &, belongs to M and achieves the disturbance attenuation level 0 with respect to b,
and disturbance attenuation level y with respect to 10, and w, for any uncertainty quadruple (%o, 0, Wy o) yg)[O,oo)) eWw.

Furthermore, the asymptotic tracking of the state variable x; to the reference trajectory y, follows from the same argument
as that of the proof for Theorem/[Il

This completes the proof of this corollary. o

7 | AN EXAMPLE
In this section, we present a numerical example that serves to illustrate the robust adaptive control design presented in this paper.
The designs for the example were carried out using MATHEMATICA.

We consider the following adaptive noise cancellation problem. The uncertain linear system is given as below, where , €1,
and 6, € 1, 4 are unknown parameters,

-6,0 1 0 06, 0010 0
x= _glg 8 i X+ g% / 8(0)3(1) Wy Xo= % (62a)

0 0-6,0 00 0000 5
y—[;?88]x+[f;lg]u+[;‘;gg]wb (62b)
Z:[(l)(l)gg]“[_e;lg]ﬁ (620)

This uncertain system does not have vector relative degree, but with one step of dynamic extension, it can be made to have
uniform vector relative degree of 1. The dynamic extension is independent of the unknown parameters 6, and 6,:

i=[10]u  1,=0

o= o]+ 54

The composite system of (62)) and (63) has the extended zero dynamics canonical form (after state transformations)

(63a)

(63b)

[ 0 -0, 0 0 0
10 0 0 0 00 0000
. | 0 0.0-00, BCO+0) 0,0,(-6,46) 0 0 00 (?9 0
X = 0, 0;+6; 67+63 61+ X+ 0 0 |u+[00O _9_2 1 Lbb
620, 0’ 620, i
01 02+02 002 07462 0, 0, 00 10
1 o e __6  _ o0 =0, 6, 00 0 1
| 07+062 07+062 07+02

100010 ‘t 1000 s
Y= loooo1 0100
This implies that the extended zero dynamics is of third order and the system is minimum phase with respect to R> and C if

0 < 0, < 60, according to [1/]. Then, we add a dummy state variable to make the system have uniform observability indices, and
subsequently transform it into strict observer canonical form. We thus arrive at the following design model

010
x=(o0o01
000

®L)x+

—0,—0; =0y,
—-0,—-6,+0, 0,
—-0;+6, 05
—b3+ 0y — 0,5 —by
0 0
0 0

02
_01

0,
6,

0y — 0y

98_09
95_96

u-+

017
00
00
00
00

00 ]
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0600
+( 0040 |®Lw, (64a)
0004
y=(100]®L)x+([1000]Q I)w, (64b)

where we have defined

= (0,,0,,05,0,, 05,05, 07,04,05,0,0,0,,,6,,)

2 3 2 203 302 4 3
. (9 o 070, 0, + 6,05 0,6, 0,63 0; 6,0,
T 172> o 2 Y 2 > 02 2 > 2 2 > 2 2 > 92 2 >
0; +07(2+6,) 0;+07(2+0,) 0;,+0,2+6,) 0;+0,2+6,) 0;+0,2+6,) 0,+0,2+6,)
9%05 0103 0193 0% )

O2+0°2+0,) 02+0°Q2+0,) 02+0°Q2+0,) 02+0°2+0,)

and introduced the disturbance transformation w, = M, with

1 0 0 0

0 1 0 0

040, _ 126, 1 0

0,460, _é 8 1

M= ode 4 e s

Oy—but0, &4 ﬂ _49_3

oL

0 0 b &

L 4 4 .

The true values of the parameters are (0,,8,) = (1,2). This corresponds to the true values of 6 =
(1,2, j‘ Z,],—,Z L 1,1,2 l) The compact set for @ is givenby 0, €1, ,6, €T4,05 efz 2 ,0, EFI : , 05 EFI o , 06 EFI e
0, € ri =, 0 € rlzl 16, 09 € r1 16, 0 €T, \/g, 0, € r4 \/?, and 0,, € r217 1 The 1n1t1al estlmates for the parameters

are selected to be §, = (2,2, % % % % % % % % % é) The initial estimate for the state vector is selected to be X, = 0. The
reference trajectory is set to be identically zero.

The first set of simulations is aimed to demonstrate the asymptotic cancellation of the sinusoidal noise capability of the
controller. The disturbance input b, is fixed to be identically zero. The simulation results are shown in Figure[Il We observe that
the tracking errors converge to zero as predicted and control inputs are bounded in magnitude by 0.15 and the transient of the
system response is well behaved. The parameter estimation errors do not converge to zero since there is no persistant excitation
in the system (only one sinusoidal for twelve parameters). The integral performance index seems to grow from zero to some
positive constant. These simulation results corroborate our theoretical results. We observe that the parameter estimation errors
are well behaved.

The second set of simulations is aimed to demonstrate the disturbance rejection properties of the controller. The disturbance
input is set to be

wy(t) = (5]—0 cos(2t), — 2]5 s1n(2t) cos(m) 30 sin(m))
The simulation results are shown in Figure 2l We see that the trackmg errors are bounded in magnitude by 0.08 and are asymp-
totically bounded by 0.065; the control inputs are bounded in magnitude by 0.2 and asymptotically by 0.2; and the transient of
the system response is well behaved. Further, the parameter estimation errors are well behaved. The integral performance index
is upper bounded by 0 and shows a negative slope of 0.0038 converging to negative infinity. These simulation results corroborate

our theoretical results.

8 | CONCLUSIONS

In this paper, we have presented a systematic design procedure for robust adaptive controllers for minimum phase uncertain
MIMO linear systems that are right invertible and can be dynamically extended to a linear system with vector relative degree
using a known dynamic compensator. For this class of systems, it is always possible to dynamically extend them [1|], and/or
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integrate a select set of output channels [15], and padding dummy state variable [[15] to arrive at a system model that has
uniform vector relative degree r € Z, and uniform observability indices v € IN ( < v) that is minimum phase according
to [1]]. We assumed that r € IN is known and an upper bound » for v is known (r = O case will be treated in another paper).
Thus, the system admits the extended zero dynamics canonical form and the strict observer canonical form. The observable
part of the system is then the design model for the system, which is further restricted to be in a block diagonal structure for the
backbone of the system that is independent of the unknown parameter vector and the control inputs and measurement outputs
of the system. The design procedure closely resembles that for the SISO case [5]. This design procedure has led to a recursive
design scheme for two classes of robust adaptive controllers for the minimum phase uncertain MIMO linear system (each one
parametrized by the desired disturbance attenuation level y). The controller actively incorporates the covariance information on
the parameter estimates into the design, and exhibits (in principle) the asymptotic certainty equivalence property, if the worst
case covariance matrix converges to zero. However, to guarantee the boundedness of all closed-loop signals under any admissible
bounded exogenous disturbance inputs, any bounded reference trajectory together with its derivatives up to rth order, and any
admissible bounded initial conditions, an appropriate cost functional was selected to keep the covariance matrix bounded away
from zero. Hence, the asymptotic certainty equivalence structure is in fact never realized. But, when the covariance matrix is
close to zero, the controller behaves as a certainty equivalent one. The adaptive controller also achieves the desired disturbance
attenuation level for all admissible initial conditions and all admissible continuous exogenous disturbance input waveforms on
the infinite horizon. Furthermore, it is proved that the control law guarantees boundedness of all closed-loop signals under any
admissible bounded exogenous disturbance inputs, any bounded reference trajectory together with its derivatives up to rth order,
and any admissible bounded initial conditions without the need for any persistency of excitation condition or any stochastic
noise assumptions. Asymptotic tracking is achieved when the initial condition is admissible, the reference trajectory together
with its derivatives up to rth order are bounded, the admissible disturbance inputs are bounded, and those disturbance inputs
with positive attenuation level are of finite energy. A numerical example was worked out and illustrates the steps involved in
designing a robust adaptive controller for a minimum phase uncertain MIMO linear system with two inputs and two outputs.
The simulation results corroborate our theoretical findings.

A number of future research directions stand out as promising. One fruitful direction of research pertains to the study of the
counterpart of the theory developed here to MIMO nonlinear systems with noiseless output measurements or with noiseless
output measurements and noisy output derivative measurements. Another interesting topic is to study the robustness of the
adaptive control scheme presented here with respect to unmodeled fast dynamics. Another interesting direction of research lies
in the study of networked robust adaptive control systems. It has been observed and proved that robust adaptive control systems
designed according to [I5] can be networked in a feedback loop fashion, and under the satisfaction of the small gain condition
for the L,-gains of the closed-loop system, the closed-loop signals will remain bounded for any admissible bounded exogeneous
disturbance inputs and any admissible bounded initial conditions that are further convergent (that is, the tracking errors converge
to zeros) when the exogeneous disturbance inputs are L, and vanishing. This result paves the way for the application of the robust
adaptive control system theory in practical use. Another fruitful research direction lies in the case when the given MIMO LTI
system is comprised of multiple square MIMO LTI subsystems in parallel interconnection satisfying an interconnection property,
where the subsystems are assumed to be robust adaptive control ready (i. e., with uniform vector relative degree and uniform
observability indices) but the composite system may have nonuniform vector relative degree and/or nonuniform observability
indices. In this case, we envision that a centralized controller can be designed without requiring any dynamic extension or adding
dummy state variables to the design model.
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APPENDIX
A MATHEMATICAL PRELIMINARIES

In this section, we introduce some mathematical preliminaries.

Fix any real normed linear space X; Sy = Bg, (X, R) is a closed subspace of B (X, X*), and therefore a real Banach space.
VM € Sy, wewillwrite M € S, if Ja € R, Vx € X, we have M (x)(x) > a || x ||2; and we will write M € Spsdx ifVx € X,
we have M (x)(x) > 0. Letting S_y 1= =S,y and S g := —Spaxc- VM|, M, € Sy, wewrite My < M, if M, — M| € S
and My < M, if M, — M| € S4x.

Proposition 1. Let X be a real normed linear space, and M, € S... Then, we have that S, , S_y, M| :={M € Sy | M >

My}, M,y :={M € Sy | M < M, } are open sets in Sy; S0, Speanes M3 :={M €Sy | M > My}, and M, :={M €

Sx | M < M, } are closed sets in Sy. Furthermore, S, o € S, and S_y € ST, M; € M5 and M, C M.

Proof. This follows directly from Proposition 10.4 of [21]@ O

Next, we specialize the above result to real Hilbert spaces.

Proposition 2. Let X be a real Hilbert space, and M, € S.. Then we have that S, o, S_y, M| :={M € Sy | M > M, },
M, :={M € Sy | M < M, } are open sets in Sy; the closures of S, y and S_ are S,y and S, respectively, and the
closuresof M, and M, are M; :={M €Sy | M > My}and M, :={M € Sy | M < M, }, respectively.

Proof. By Proposition[T] all we need to show is that E = Spax- Then, S_y = =8,y = =8, x = =Sax = Spsar» Where
the second equality follows from Proposition 7.102 of 21]@ Furthermore, Ml My + S, = Mp+S, ¢ = My+Spqxc = M,
where the second equality follows from Proposition 7.16 of ZI]E and M2 =My+S_=M,+ S x x=My+ S, = My,
where the second equality follows from Proposmon 7.16 of [21]

VM € Sy, V6 € (0,00) C R, M + d>mv € Bg, (M,5)N S, , where @ : X* — X is defined as in Riesz-Fréchet
Theorem 13.15 of 21]@ By the arbltrarmess of 5, wehave M € S, o 4+ - Hence, by the arbitrariness of M, S,iq € S, + - Hence,
S, x = Spsax» by Proposition[Il

This completes the proof of the proposition. o

When X is R”, we can obtain the following result.

Proposition 3. Let M;, M, € S,, wheren € N.Let M :={M €S, | M| <M < M,}. Then, M is compact.

Proof. In case that M, £ M,, then, M = @. Clearly, M is compact. In the following, we will consider only the case where
M, <M, Thenn M={MeS, | M>M}n{MEeS, | M <M,}. ByProposition[2] M is a closed set. Clearly, M is
nonempty. Now, we will show that M is bounded. Denote the elements of M, by (m;;),x,, | = 1,2.VM = (m;;),,, € M, we

have M — M = (m;; = my ;)0 € Spsan- Then, we have my; > my ;;, i = 1,...,n. By the fact that M, — M € S, we have
my; <m, i =1,...,n Hence, m; is bounded inside the closed interval (my;,myuli=1,...,n.Vi,j € {1,...,n} withi < j,

the 2 X 2 matrix

— — P
My = My i My = My

2For the convenience of the reader, this proposition has been reproduced as Proposition[7lin Appendix [C]
3For the convenience of the reader, this proposition has been reproduced as Proposition[Slin Appendix [C]
“4For the convenience of the reader, this proposition has been reproduced as Proposition[@lin Appendix [C]
SFor the convenience of the reader, this proposition has been reproduced as Proposition@lin Appendix [C]
SFor the convenience of the reader, this theorem has been reproduced as TheoremPlin Appendix [C]
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since M > M,. Then, (m;; — m,;;)* < (m; —m,;)(m;; —m, ;). Hence, m;; is bounded. Therefore, all elements of M are
bounded. Hence, M is a closed and bounded subset of S, and S, is a finite dimensional real normed linear space. Therefore,
M is compact by Proposition 7.42 of [21]ﬂ

This completes the proof of the proposition. O

Definition 2. Define functionsx; : R >R, x, : R—> R, x; : R—> R,andx : R - Rby,Vx € R,

() = { . izg (Ala)
Ky(x) = 1—ex; (1 —x) (Alb)
K3(x) = Ky(ex;(x)) (Alc)
() = K3(x) + 1 ; K3(1 —x) (Ald)

Then, we have the following result concerning the properties of the above functions.

Proposition 4. Let «,, k,, k3, and k be defined in Definition 2] Then,

1. K, is C,, monotonically nondecreasing, strictly increasing on [0, c0), and lim_, |  x;(x) = 1.

2. K, is C,, monotonically nondecreasing, strictly increasing on (—oo, 1], k,(x) = 1, Vx > 1, and x,(0) = 0.
3. k3 is Cy, monotonically nondecreasing, strictly increasing on [0, 1], k5(x) = 1, Vx > 1, and x;(x) = 0, Vx < 0.

4. k is C, monotonically nondecreasing, strictly increasing on [0, 1], k(x) = 1, Vx > 1, k(x) = 0, Vx < 0 and —% + k(x+
%): % —K(%—X),VXE]R.

Proof. Statement 1 is standard from analysis.

For statement 2, k, is C_, since it is the composition of C_, functions. Vx,;,x, € R with x; < x,, we have 1 — x; > 1 — x,,
which implies that x;(1 — x;) > &;(1 — x,), and hence, k,(x;) < k,(x,). This proves that k, is monotonically nondecreasing.
Vx,x, € (—o0,1] € R with x; < x,, we have 1 — x; > 1 — x, > 0, which implies that x;(1 — x;) > «;(1 — x,), and
hence, k,(x;) < k,(x,). This proves that k, is strictly increasing on (—co, 1]. Vx > 1, we have 1 — x < 0, which implies that
k(1 — x) = 0, and hence, k,(x) = 1. Note that k,(0) = 1 —ek;(1) = 1 —ee™! = 0. This completes the proof of statement 2.

For statement 3, k5 is clearly C_ since it is a composition of C functions. Vx;,x, € R with x; < x,, we have ex;(x;) <
ek (x,), which implies that k;(x,) = K,(ex;(x)) < ky(ex;(x,)) = k3(x,). This proves that k5 is monotonically nondecreasing.
Vx,,x, € [0,1] € R with x; < x,, we have 0 < ek (x;) < ek;(x,) < 1, which implies that 0 < x,(ex;(x;)) = k3(x;) <
k3(x,) = Kky(ex;(x,)) < 1. This proves that k5 is strictly increasing on [0, 1]. Vx > 1, we have ex;(x) > ex;(1) = 1, which
implies that x;(x) = Kk,(ex;(x)) = 1. Vx < 0, we have ek, (x) = 0, which implies that x;(x) = k,(0) = 0. This completes the
proof of statement 3.

For statement 4, « is clearly C . Vx;,x, € R with x; < x,, we have x;(x;) < K3(x,), 1 —x; 2 1 — x,, and k3(1 — x;) >
i3(1 — x,), which further implies that x(x;) < k(x,). This proves that k is monotonically nondecreasing. Vx, x, € [0, 1] C R
with x; < x,, we have k5(x;) < k3(x;), 1 > 1—=x; > 1 —x, >0, and k5(1 —x,) > x3(1 —x,), which implies that x(x;) < k(x,).
This proves that k is strictly increasing on [0, 1]. Vx > 1, we have k3(x) = 1, 1 —=x < 0, and k3 (1 —x) = 0, which further implies
that k(x) = 1. Vx < 0, we have k3(x) =0, 1 —x > 1, k3(x) > 1, which implies that k(x) = 0. Vx € R, we have

K3(X+%)+]—K3(%—x)+K3(%—X)+1—K3(%+X) B
2 2 B

1 1
K(x+§)+1<(§—x)—

This completes the proof of statement 4.
This completes the proof of the proposition. O

Remark 2. The statement 4 of the previous proposition shows that the graph of k is symmetric about the point (%, %).
Definition 3. Define p; : R > R by, Vx € R,
p1(x) = x(1 = k(%)) (A2)

7For the convenience of the reader, this proposition has been reproduced as Proposition[[0]in Appendix [C]
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Define y : RXR — R by

0 b=0
w(a,b) = { a+\/mb#0 V(a,b) e R xR (A3)
b
Then, we have the following results for p, and .
Proposition 5. p, is C and strictly increasing. p;(x) = x, Vx < 0.0 < p;(x) < x, Vx > 0. lim,_,,  p;(x) = 1.
Proof. Clearly, p, is C,. Vx <0, we have p;(x) = x(1 —0) = x. Vx > 0, we have 0 < p;(x) = x (1 — e_%) < x. Note that

1 — a7y
lim p,(x)= lim x(I—e”+) = lim 1= limer=1
x—+00 X—+00 y—0t y y—0+

where we have applied L’Hospital’s rule in the second to last equality. Now, all we need to show is that p; is strictly increasing.
By the facts that we have proved above, we only need to show that p, is strictly increasing on (0, +o0). We will show that
p(ll)(x) > 0,Vx > 0.Vx > 0, we have

p(ll)(x) =1-x(x) —xkil)(x) =1-e —xe_il =l-er—e
x2

Note thate” > 1 + y, Vy € R, with equality holding if, and only if, y = 0. Then, we have

==

==

1>{+ye™”;, Vy>0; 1>e_§+e_§l; Vx>0
x

(1)

Hence, we have p|

(x) > 0. This completes the proof of the proposition. o
Lemma 2. Let D, := {(a, b) € R? ‘ b#0ora< 0}. Then, D, is open in R? and y is Cy, on D,.

Proof. ¥(ay, by) € D,,, we will distinguish between two exhaustive cases: Case 1: b, # 0; Case 2: a; < 0.

Case 1: by # 0. Let O := By ((ag, by), |by|/2). V(a,b) € O, we have |b| > |by|/2 > 0. Then, (a,b) € D,,. Hence, we
have O C D,,. We will then show that y is C,, on O. Note that V(a,b) € O, we have b # 0, which implies that p(b*) > 0
and (pl(a))2 + pl(bz) > 0. Since the square root function is C, on (0, +o0) and the inverse function is C,, on R \ {0}, then,
w(a,b) = L) vy p) € 0,is C,, on O.

Case 2: ay < 0. Let O := By ((ao, by), |a0|/2). V(a,b) € O, we have a < a,/2 < 0. Hence, (a,b) € D,. Therefore, we
have O C D,,. Fix any (a, b) € O. Note that p,(a) = a < 0. Then, we have

0 b=0 0 b=0
w(a.b) = ST P B GG

0 b=0 0 b=0 b(1 —x,(b%)
= p](bz) b ;é O = b(l—Kl(bz)) b # O e —
b+ B—a) Vet B)-a V@ +p (b)) —a
Notice that a® + p,(b*) > a*> > 0 and \/a? + p,(b?) — a > 2|a| > 0. Then, y is C_, on O.
Thus, in both cases, we have found an open ball O centered at (a, by) which is a subset of D, and y is C,, on O. Hence, we
have D,, is open in R? and y is C,, on D,,. This completes the proof of the lemma. o

Remark 3. We make the following observations on the function .

(a) If a > 0 and b # 0, we have

Ve (@2 + (80 _ V2

a
,bh)——| = <
“”(“ )% ’ 5] 1]
(b) If a < 0, we have, by the proof of Lemma 2]
b(1— Kk (b%) 5] (1 — Kk, (b))
wlab) = ————"— = |yab)< - 1

<
Vaz+p,(b*) —a [b|y/1 = Kk, (B?) + |a|
Definition 4. Define x; : R> > Rand «, : R x (1,0) = R by
K(x, p) 1= x (1 =Ky (px)) (A4)
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Kex— 1L, )+ 1 ifx>0
ky(x,p) = P | (AS)

—1—1(6(—]—)6,1:) ifx<0

We define the saturation function SATF : R xR, — R by
10

SATF(x,p) := el o * K4(£x, 1

11 10p " 10

Proposition 6. The following statements holds for k¢, x4, and SATF functions, respectively.

) (A6)

(1) kg 18 Cy; and kg(x, p) = x if xp < 0.
(ii) If p > 0, then x¢(x, p) = 117 p,(px), and K4(x, p) is strictly increasing with respect to x € R, and lim_,  x¢(x, p) = 11).

(iii) Vp > 1, k4(x, p) is strictly increasing in x € R, lim,_,__ x,(x,p) = —p, lim__, _ k,(x,p) = p, and k,(x,p) = x, Vx €
[-1,1] Cc R; and x4 is C,.

(iv) SATFis C_; and Vp > 0, SATF(x, p) is strictly increasing in x € R, lim,_,_ SATF(x, p) = —p, lim, _, ., SATF(x, p) = p,
and SATF(x, p) = x, Vx € [-12 2] c R.

Proof. (i) This follows directly from (i) of Proposition 4l
(ii) This follows directly from Definition 3] and Proposition
(iii) This follows directly from (i) and (ii).
(iv) This follows directly from (iii). This completes the proof of the proposition. O

The plot of functions xy, k3, k, p;, SATF, and y are illustrated in Figure[ATl

Lemma 3. Let X and Y be real normed linear spaces, g : A — R be C,, where A C X is open, and k € {0} UIN U {c0}. Let
A i={x€A|qx)<c }and A, :={x€ A | g(x) >c,},wherec;,c, eRandc; >c,. Let f; : A, = Y,i=1,2,be_,.
Clearly, A= A; UA,.Define f : A > Yby

J1(x) Vxe A\ A,
Fo) =1 £+ ks (25— 0, ) (1500 = £1()) ¥x € 4, n 4,
fr(x) Vx € Ay \ A

where 0,0, € (0,1) C R and (1 + ¢,)0; < 1, and k5 is defined in Definition 2l Then, f is C, on A.

Proof. Clearly, A; and A, are open sets in X, since g is continuous. Define A; := {x € A | g(x) < ¢, + 0,0, (¢; — ¢,) } and
Ay i={x€ A | qx)>cy+(+0,)0,(c; —¢c,)}. Clearly, A; C A, and A, C A, are open sets in X. Vx, € A, we will show
that 30 C X, which is open, such that x, € O C A and f is C;, on O. Then, f is C, on A. We will distinguish between three
exhaustive and mutually exclusive cases: Case 1: x, € A; \ A,; Case 2: x, € A; N A,; Case 3: xy € A, \ A;.

Case 1: x, € A; \ A,. Then, g(x;) < ¢, and x, € A;. Vx € A;, we have either x € A, \ A,, which implies that f(x) = f,(x);
or x € A; N A,, which implies that % < ¢, and f(x) = f,(x) by Propositiond Hence, f(x) = f,(x), Vx € A;. Hence, f
is C, on Az 3 x,.

Case 2: x; € A; N A,. Note that A; N A, is open in R". Then, f is C, on A; N A, 3 x,, by Propositiond and Proposition 9.45
of 2118

Case 3: x, € A, \ A;. Then, g(x;) > ¢, and x, € A,. Vx € A,, we have either x € A, \ A,, which implies that f(x) = f,(x);
or x € A, N A, which implies that % > 1+ ¢, and f(x) = f,(x) by Proposition 4l Hence, f(x) = f,(x), Vx € A,, and
fisC,on A, 3 x,,.

This completes the proof of the lemma. |

Next, we present a lemma that factors a nonlinear function. This result is useful in integrator backstepping designs.

Lemma 4. Let X and Y be real normed linear spaces, and Z be a real Banach space, f : D — Z, where D C X X Y is open.
Let D, :={x € X | 3y € Y suchthat (x,y) € D}, which is the projection of D onto X and is openin X. Leta : D; - Y
be such that (x, a(x)) € D, Vx € D, and V(x, y) € D, the line segment connecting (x, y) and (x, a(x)) is entirely in D, i.e.,

8For the convenience of the reader, this proposition has been reproduced as Proposition[[Tlin Appendix [C]
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(x, sa(x)+(1-s)y) € D,Vs € [0,1] C R. Assume that f, %,andaare C,.where k € {0}UNU{oo}. Then, 3f : D—-B(Y,2),
which is C, and satisfies

fey) = fx,a(x) = f(x,y) (y —a(x)), V(x,y) €D (AT)

Proof. Define f : D — B(Y,2) by

1
~ 0
flxy) = /0 a—i(x, a(x)+s(y—ax)ds;  V(x,y) €D

Note that (x, y) € D implies that (x, a(x) + s (y — a(x))) € D, Vs € [0, 1]. By Theorem 12.112 of [21]E we have f is C,. Note
also that

1
~ 0
S,y —akx) = / a—ﬁ(x, a(x) + s (y— a(x))) ds (y — a(x))
0

1
= /0 %(f(x, a(x)+ s (y—ax)))ds = f(x,y) — f(x, a(x)); V(x,y) € D

where the second equality follows from Propositions 11.92 and 7.126 of [21]@ and the last equality follows from Theorem 12.83
of [2111] Hence, £ satisfies (A7) on D.
This completes the proof of the lemma. |

Lemma 5. Letn € N, D C R" be nonempty, [#,,7,) C R be a nonempty interval, and K C D be compact. Let & : [t),¢,) = D
be continuous, V' : [f,,1;) X D — R be nonnegative and continuous, and W; : D — R be nonnegative and continuous, i = 1, 2.
Assume that

(1) I/I/l(x) S V(t9 x) S I/I/z(x), V(t9 x) € [t09 tl) X D»
(ii) Vt € [ty,t;), with &(t) € D \ K implies limsup,,_, . (V (¢t + h,&(t + h)) — V (1, £()))/h < 0.
Then, there exists a constant 4 € ]R_+, such that V (1, £(¢)) <, Vt € [t,, t;). Furthermore, W, (&(?)) < 5, Vt € [t,,t)).

Proof. Define n := max{V (t,,&(t,)),sup sup V(t,x)}. Note that sup sup V(¢,x) < sup W,(x) < +oo, which implies that
xEK 1€[ty,t)) xEK t€[ty,t)) xeK

n € R.
Fix any # > n. We will show that V (¢, £(¢)) < 7, Vt € [t,,t,). Define

T,={teltyt) | V@.ED) <7, Viely.}

Clearly, V' (t,&(ty)) < n < 1. Then, t, € T;. Define ¢, = sup T;,. Then, we have 1, <1, <t,.

We will next show V(¢,&(¢)) < 7, Vt € [t,,¢,). Consider 2 exhaustive and mutually exclusive cases. Case 1: t,=1.1n this
case, Vt € [t,1,), there exists 7 € (¢,1,) such that 7 € T;. Then, V' (t,£(1)) < 7 by the definition of T;. This case is thus proven.

Case 2: 1, < t;. We will show that this case leads to contradiction. We first claim that 7, € T;. Suppose 7, € R \ T;. Then,
there exists #, € (7, ;] such that V' (z,, &(t,)) > 7. By continuity of & and V', this implies 3¢5 € (7, 1,) such that V (15, &(13)) > 7.
Hence, Vi € [t3,1)), € R\ T;. This leads to the contradiction t, = supT; < t; < t, < t,. Therefore, t, € T, which
implies that V' (1,,&(7,)) < 7. We further claim that V' (¢,,¢(7,)) = 7. Suppose V (¢,,&(f;)) < 7. By continuity of V' and ¢,
there exists t, € (s, t,) such that V' (¢,£(r)) < 71, Vt € [t.1,]. This, coupled with 1, €T, implies that z, € T;. This fact
contradicts with the definition of 7. Hence, V (1, &(t;)) = i1 > n. By the definition of #, we have &(7,) € D\ K, which implies
that lim sup, o« (V' (t, + h,E(t, + h) = V(1,, f(tf)))/h < 0. By the definition of lim sup, there exists #, € (7,,7,) such that,
vt € (t;,1,], w < 0. This implies that V (¢, &(t)) < V(t;,&(t;)) = 71, Vt € (1, 1,]. This, coupled with the fact that
1, € Ty, implies that tf2 € T. This fact contradicts with the definition of 7. This shows that Case 2 is impossible.

In the above, we have shown V (¢, £(1)) < 7], Vt € [1,,1,). By the arbitrariness of 77 > 5, we have V (¢, £(1)) < n, Vt € [t,,1)).
This further implies that W, (&(1)) < 5, Vt € [t,,1)).

This completes the proof of the lemma. |

For the convenience of the reader, this theorem has been reproduced as Theorem[3]in Appendix [C]
10For the convenience of the reader, these propositions has been reproduced as Propositions[[2land[[3lin Appendix [C]
For the convenience of the reader, this theorem has been reproduced as Theorem[Elin Appendix [C]
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B BACKSTEPPING LEMMAS

In this section, we first present a backstepping lemma based on cancellation and Arztan’s formula.
Lemma 6. Consider the following system

= f,(x,, Xz xg) + h,(X,, X, X)W (B8a)
= fo(x,, Xgs Xg) + 8,5 X gy X )u + hy(X,, X gy X)W (B8b)

where x, is a state vector, x, € D, € X,, D, is nonempty and open, and X, is a real Banach space; x, is a state vector,
x, € D, € X,, D, is nonempty open and convex, X, is a real Hilbert space; x, is some signal, x, € D; C X, D, is nonempty
and open, and X is a real normed linear space; u is the control input, u € U, and U is a real Hilbert space; w is the disturbance
input, w € D, €W, D, contain a nonempty open subset of W, and W is a real Hilbert space; D, := D, X Dy; f,, hy, f4: &0
and h,, be mappings of D, X D, x D, into X,, B (W, X, ), X, B (U,X,),and B (W, X, ), respectively; f, and h, be C; and all
of their partial derivatives of kth order are further continuously partial differentiable with respect to x,, k € {0} UNU {o0};
fa 84 and b, be Cy, g,(x,, x,,x,;) €EB (u, :xa) is bijective, V(x,, x,, x;) € D, X D, X D,.

Assume that we are given V,, : D, — R, whichis C,,,and a, : D, — D,, whichis C,_, such that the derivative of V,(x,(t))
along a solution of the dynamics (B8d) with x,(r) = a,(x,(#)) can be written as

0’ ra’

Voo X X W | ) = ~LoCs ) + 72 w3y = 72 [|w = 0,(x01 %) I30: V(x,x)€D;, YweD, (BY)
where [, : D; — Ris continuous,y € R,, 0, : D, X D, = W be C, and defined by
1 v,
2 %) 1= 5 5P (a—xo(xo)h,,(xo, a,(x,), xd)> (B10)

where @, : W* — W is the isometrical isomorphism defined in Riesz-Fréchet Theorem 13.15 of [21]@ Let¢ : D, X
D, x D; — X, be a C; design function, Z : D, x D, = S, 5 C Sy = Bg,(X,,R) be a C,, design function, and
R: D,xD,xD;— S _q beaC, design function. Assume that Z satisfies the following two conditions.

x,) €D, xXD,.

0’ a

(i) Z(x,%,) € Sy, Vi

T,
(i) 7506, %,) 1= 2Z(x,,%,) + (a—Z(xa,xa)> " (g — ,(x,)) € B (X,, X" ) is bijective, ¥(x,, x,) € D, X D,

0x
LetV : D,xD, — Rbedefined by V(x,,x,) :=V,(x,)+ Z(x,, x,)(x,—a,(x)(x,—a,(x,)), V(x,,x,) € D,xD,, which is
Cii1-Leto, 0, €(0,1) c Rand g3, 04 € (0, 0) C R with (149,)0, < 1. Then, there exists a C, functiona : D, XD, xD, — U

given by (BI3) such that the derivative of V' (x,(t), x,(¢)) along a solution of the dynamics (BS) with u(z) = a(x,(¢), x,(?), x,4(?))
can be written as

a

y 2 2 2 2
V0 X X th W) | oy = =10 X Xg) + 77 wllyg =77 |0 = 0Cegn X0 x0) |3

2
< =1y (Xps Xg) = (P (X5 X X)s Xg = (X)) + 12 N w5y = 77 | w = 0(x0 X0 x0) [l 5 (B11)
v(x,,x;) € D, Vx,eD, YweD,

where/ : D,x D,x D, - R is continuous;/ -/, : D,xD,xD,; - RisCando : DX D,x D, - Wis C, and given by

1 oV ho(x,, X, X4)
s s = —(D 0> a ’ ”
O-(xo Ya xd) 2 2 <a(xm a)( ¥ ) [h (xo’ a’xd)

If, in addition, there exists (x,, X 49, X40) € D, XD, XD, , such that (xoo) ey [o(X000 X000 Xa0) = I 5 Fo(Xo0s Xa05 Xg0) =
Do, 4o(Xg0) = Xg0- a0 (x50, Xg05 Xgo) = I, » then a(x,, aO’de) A

)ew (B12)

Proof. V(x,,x,;) € Dl, Vx, € D,,Yw € D,,, we have

V(xa, Xgr Xg, W) = (x Yo X g X g) + hy(x,, X0 Xg)W)

)%
= a—x"(xg)(f,,(xo, a,(x,), Xg) + hy(xy, y(X,), xd)W)+ (x )Xo X Xg) + (B0 X X)) 21 (W) (x, = t,(x,.))

12For the convenience of the reader, this theorem has been reproduced as Theorem[2lin Appendix [C]
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where f, and h, are C, functions of D, X D, x D, to B (X,,X,) and B (X,,B (W, X,) ), respectively, by Lemma @ since
D, € X, is convex. By the assumption, we have

2 2 2 2
V,(Xgs Xgo Xgo W) = =L, (x,. X)) + ¥ w3y — v* |0 = 0,(x,0 x) || 30

a ao(xo)) >>DC0

o’ va’ o’ va’

Let z = x, — a,(x,). Then, Vu € U,

. . . . 0Z \ T 0050 .
V(xy, X, xgu,w) = V,+2Z(2)(2)+ Z(z)(z) =V, + << TyX, + < (E ) (z) — I ) X, z>>
x(l

o 0

1 x ) + 7P 0By = 7 [0 = 0,6 x0) [ + (C 2 + 277 20 + 30,2 )

where y,, x,, and y; are C; functions on D, X D, X D, and given by

0Z
XI(XO’ a’xa’) - <<axo

T (X s X ) fo(X0s X o Xg) + (F, (X, xa,xd))’

0 a)) (xg = a,(x,)) = 2Z(x,, a) (X)>f(xm Xgs Xg)+

1 0Z 21
(X, XgXy) = 2—}/2 ( (()_xa(xmx”)> (x,—a,(x,) —2Z(x,,x ) (x ))

1
2y2 0x,
23X Xgs Xg) = T 7 (X0 X)80(Xgr X0 Xg) € B (U, X7)
Define a; : D,x D, x D; — U by

hy(x,, X4, x4) + %n’z(x X)h(xp, X, %) + — (x YRy (X, X xd))Tl‘ €B(W,X¥)
14

al(xo’ a’xd) (/1/3()60’ a’xd)) ( XI(XG’ a’xd) 27/ )(2(xa’ a’xd)o-o(xo’xd)
=12 20X s Xs X)X X X)) P (X, = 0p(X,)) = Do (B(X,5 X X)) (B13)

where @, 1 Xj — X, is the isometrical isomorphism defined in Riesz-Fréchet Theorem 13.15 of [21] Clearly, a; is C,. a
is the cancellation control law. Then, it implies that

V (X, Xgs

Xgs o 0) ] oy = lo(Xn Xa) = (P00 X0 Xg). 2)x, + 77 w5
2
Define a, : D, x D,x D, — U by
(X0 X0 Xg) = =y (a0 X gy X ), DXy, X gy Xg) ) (R(Xys X s X)) (3(5,0 X0 X)) (3, — (%)) € U (Bl4a)
a(x,, X, xg) = <xa —a,(x,), P(x, X, Xxy) >3€a + << 2y? X (X, X0 X0)0,(X,, X ) (B14b)
2100 X0 X)) + 17 20500 X0 %) (X0 X X)) P (X, = @, (%)), X, — @,(x,) ) ). €R

b(xgr X0 Xg) = ({ (r3(Xpr X0 X)) (x4 = @y(x,)), (R(X,, X Xgs X)) ™! ()(3(x0, Xgr X)) (x4 — %()%))))u €R (Bl4c)
a,(x,, Xz Xg) = —a(x,, X, Xz) + 03b(x,, x,,x;) €ER (B144d)

where y is as defined in Definition 3l Clearly «, is C, if a,(x,, x,, x;) > 0. a, is the Arztan’s formula based control law. Then,
the derivative of V is given by, V(x,, x,, x,;) € D, X D, X D, with a,(x,, x,, x,;) > 0,

V(X0 X 40 X g Uy W) |u=a2(x o) = —1,(x,, x4) — (x, — a,(x,), gb(xo,xa,xd))x +72 w||%A7
(P10 X0 XD + 1 (B X X N2 = 12|00 = 0,0 %) = o X X)) o, 2
< —1y(X%gr %0) = (B Xy %), 2, + 7 NIy = 7 ||w 0,5 %) = (g x5 O 2
Let A, :={(x,,x,,x;) € D,XxD,XD; | a;(x,,x, x;) <04},and A, := {(x,,x,,x;) € D,XD, XD, | aj(x,,x,x4)>0}.

B3For the convenience of the reader, this theorem has been reproduced as Theorem[2lin Appendix [C]
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Define « : D, X D, X D; — R" according to Lemma [3|by

a,(%) Vx e 4, \ A,
a® =4 a,() + &3 ( a@ _ 02> () —a, () VX € A, NA, Lell (B15)
a,(X) Vx e A, \ 4

By Lemma[3 « is C, on D, X D, X D,,.
Then, the derivative of V' is

; . 2 2 2 2
V(x,, X4 X 4 U, W) |u:a(x oy =5 O X x) 7 lwllyy =y |w—=0oCx, x4 x0) |70

2
S _lg(xmxd) <¢(x0’ a’xd) Z>fx +y ”w”W y ”LU—O'(x,,, a’xd)”W

where
O-(xos ar xd) =0 (xm xd) + (12(x09 a® xd)) qumv( ao(xo))
] 0 !
= 53% (% 5 550D ) @ o %) B B (5 = 5,)
= Lo (%ot @ '
= 55%w ( 5 G000 050, x)) ) + @aaltaC X x0)) (5 = (5,)
1 al/g 07z T, !
= 2—7/2<DW (a—xo(xo)(ho(xm a,(x,), X)) + ( ( <a_x0(x”’xa)> (x, — a,(x,) — . > (hy(x,, x,, xd))) .

, av, !
(x, — a0 (x,) + (77 (X s X DN (X 00 X 0o X 0)) (X, — @, (x,)) + ( 2 ) (x, — “o(xg)))

ox,

o’ ra’

1 , 07 Ty, 4
= 2_}/2(DW ( P) 0> %o 0 *a> ( ( a_xo(xo’ xa)) (xa - ao(xo)) - 2Z(xo’ Xq P) 0 ) :
av,
(% = 0 (X)) + (hy(x, X4y X)) (7 (X, X)) (X, — @,(x,)) s (x V(X X gs X )(X, ao(xg)))
1

= 2—}/2<I) ( (x Y(hy(X,s X gy Xg)) + (R (X0 Xy X)) ((—(xo, a)) (x, — a,(x,))

270t %) 000 ) (0 = 0050+ Ol %30 (50 (5, = 0,05,

1 oV Ry (X, X g0 Xy)
= —o - , o\"o>a
2y2 w <6(x,,,xa) (X0 X) [ha(xo,xa,xd)] >

This proves (BI2), which is C, on D, X D, X D,,.

If, in addition, there exists (x,, X 9, X40) € D,XD,XD,, such that —(xoo) Ooces [o(X005 X405 Xa0) = I, fa(X 05 Xa0> Xa0) =
Ix,» 4p(Xg0) = Xg0, and P(Xy0, X405 Xg0) = I then y; (x40, Xg0, Xg0) = 19x o (xoo,xdo) Oy, and x4 — a,(xy0) = 9o . This
further implies that a;(x,g, X9, X40) = Iq(- Furthermore, a(x,g, X9, X40) = 0, (X9, X0, X40) = 0, and a;(x g, X 49, X49) = 0.
Then, a(x0, X 40, X40) = @1 (X0, Xa0» Xg0) = I

This completes the proof of the lemma. O

The preceding lemma yields a controller that is sufficiently complex, which may not be desired computationally if we just use
only cancellation but not Arztan’s formula. Below, we present a backstepping lemma that only uses cancellation, which yields
a (computationally) much simpler controller.

Lemma 7. Consider the following system
X, = foXp X0 xg) + (X, X, X)W (B16a)
= [o(xgs Xgs Xg) + 84(Xgs Xgo XU + hy(Xy, X X)W (B16b)
where x, is a state vector, x, € D, € X,, D, is nonempty and open, and X, is a real Banach space; x, is a state vector,
x, € D, € X,, D, is nonempty open and convex, X, is a real Hilbert space; x, is some signal, x, € D, C X, D, is nonempty
and open, and X, is a real normed linear space; u is the control input, u € U, and U is a real Hilbert space; w is the disturbance

input, w € D, €W, D, contain a nonempty open subset of W, and W is a real Hilbert space; D, := D, X Dg; f,, h,, f,: &4
and h, be mappings of D, X D, x D, into X,, B (W, X, ), X,, B (U, X, ), and B (W, X, ), respectively; f, and &, be C; and all
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of their partial derivatives of kth order are further continuously partial differentiable with respect to x,, k € {0} UNU {o0};
far 8o and h, be Cy, g,(x,, X, x4) € B (U, X, ) is bijective, V(x,, x,,X;) € D, X D, X D,,.

Assume that we are given V,, . D, — R, whichis C,,,and &, : D, = D,, whichis C,_, such that the derivative of V,(x,(?))
along a solution of the dynamics (B8d) with x,(#) = a,(x,(¢)) can be written as

2
V(o Xgs Xgs ) | ) = =1 (X0 X)) + 72 wlity =7 |w =0, %) I3 V(x,.x,) €D,, VweD, (B

0’ a’
where [, : D; — Ris continuous,y € R,, 0, : D, X D; - W is C; and defined by
1 v,
23 1= 5 5P (a—xo(xo)h,,(xo, a,(x,), xd)> (B18)
where @, : W* — W is the isometrical isomorphism defined in Riesz-Fréchet Theorem 13.15 of [21]@ Let¢ : D,x D, X

D; — X, be a C; design functionand Z : D, X D, = S,y € Sy = Bg, (f)Ca, R) be a ;| design function. Assume that Z
satisfies the following two conditions.

x,) € D,xXD,.

o’a

i) Z(x,,x,) €S, X, V(x

T,
(i) 750, %,) 1= 2Z(x,, %,) + (a—Z(xD,xa)> " (x, — a,(x,)) € B (X,,X*) is bijective, ¥(x,, x,) € D, X D,

ox,

LetV : D,x D, — Rbedefined by V(x,,x,) :=V,(x,)+ Z(x,, x,)(x, — a,(x,)(x, —a,(x,)), V(x,,x,) € D, X D,, which
is C;- Then, there exists a C, function a : D, x D, x D, — U given by (BI3) such that the derivative of ¥V (x,(?), x,(t)) along
a solution of the dynamics (BS) with u(?) = a(x,(1), x,(1), x,(¢)) can be written as

2
V(Xgs Xas Xgs s ) | i ) = =1 Xgs ) + 72 1015 = 72 [ w = 0Cxg0 X0 %) |3
2
= _lo(xos xd) <¢('xa’ a?xd)9x - (x )>fx,' +y ”w”W Y ”LU—O'(x,,, a’ xd)”W’ (B19)
v(x,,x;) € D, Vx,eD, YweD,
where /! : D,x D,x D, - R is continuous;/ -/, : D,xD,xD,; - RisC;ando : DX D,x D, - Wis C, and given by

1 v hy(Xgs X4 X )
(X Xgs Xg) 1= 5= D1y ( o o Xa) oYt
2y o(x,, x,) h(x,, X4 Xy)
If, in addition, there exists (x,, X 9, X40) € D,XD,X D, such that Z—)I::(xoo) = o5 So(Xo0s Xa0s Xa0) = I » fa(Xo0> X405 Xa0) =
qu, a,(X,0) = X0, and P(X 0, X 0, X 40) = qu, then a(x g, X0, X40) = 9.

) cW (B20)

Proof. Follow the proof of Lemmal@]to the design of @; and let @ = a;. The result then follows immediately. o

Remark 4. We note here that the preceding two backstepping lemmas are very generally stated, where the states of the systems
are in general abstract spaces. Therefore, we no longer need to convert all states into column vectors for the result to be applied,
which is done in the SISO paper [5] due to the limitation of the backstepping lemmas there.

Lemma 8. Let X be areal Banach space, X', be areal normed linear space, and W be a real Hilbert space, D C X be a nonempty
open set, D, € X, be nonempty, D,, € W which contains a nonempty open subset of W, and D; C D X D, be nonempty. Let
V : D - RbeC,, f and g be continuous mappings of D X D, into X and B (W, X), respectively, / : D; — R be continuous,
6 . D, - W,and y € R, be a constant. Consider the dynamics

x(1) = f(x(0), x4(1)) + g(x(2), x4(1))w(7) B21)

where w(-) is any By (R )-measurable signal taking values in D,,, and x,(-) is a continuous signal taking values in D,. Then,
the following statements are equivalent.

(i) The function V' satisfies the Hamilton-Jacobi-Isaacs equation:

—(x)( G x,) + (x)g(x, xd)H +1(x,x,)=0; VY(x,x,) €D, (B22)

w5

14For the convenience of the reader, this theorem has been reproduced as Theorem[2lin Appendix [C]
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(ii) The derivative of V (x(t)) along a solution of (BZI)) can be written as

V(x, x4, w) = %(V(x(t))) = I, x) + P2 w2y = 72 |w = 00e, x) |3 : (B23)

x(H)=x,x4(O)=x4,wt)=w

V(x,x,) € D;, Vwe D,

Furthermore, statement (ii) implies that

1
272
where @, : W* — W is the isometrical isomorphism defined in Riesz-Fréchet Theorem 13.15 of [21]

o(x,x,) = CI)W((())—I;(x)g(x, X)) V(x,x,) € D, (B24)

Proof. We first show “(ii) = (1).” V(x, x,;) € D,, Vw € D,,, we have

%(V(x(t))) x(t=xx, (0= wl0=w << (Z_I;(x)’ Jxxa) >>x * << (Z_I;(x)’ g xw >>x
= ((Ze. 1))+ (e xpw)) = (@ rex0)) +{ @G xw)

= —l(x,x;) + 7 |w ”%/\7 -7 |w—o(x, x,) ||%A7 = —1(x, %) + 27 (0(x, X)Wy — Y2 {0(x, X,), 6(x, X4) )y (B25)

Since the above holds for all w € D,, which contains a nonempty open set subset of W, then, 2y%0(x, Xy) =
@W(g—v(x)g(x, x,)), V(x,x,) € D,. This proves (B24). Substituting this equality into (B23) yields the Hamilton-Jacobi-Isaacs
equatlo)gl (B22).

Next, we show “(i) = (ii).” V(x, x,;) € D,, Vw € D,,, we have

%(V(x(t))) xO=xx (O=xwO=0 << (Z_I;(x)’ T xa) >>x * << (Z_I;(x)’ g% X >>x

Since V satisfies the Hamilton-Jacobi-Isaacs equation on D,, we have

d - 21wl — 72w - Lo, 2Y ?
G VO = TR+ 0l =72 1= @G @t [
Then, equation (B23) holds with o(x, x,;) = %fbw(g—v(x)g(x, x,)), Y(x,x,) € D,.
% X
This completes the proof of this lemma. O

Lemmal@lis useful in backstepping controller design. The significance of the function V' and control law « can be be demon-
strated by a Hamilton-Jacobi-Isaacs equation as described in the following lemma, which presents essentially the same result as
Lemmal@l based on the equivalence relationship of Lemma[§

Lemma 9. Let X, be a real Banach space, X,, U, and W be real Hilbert spaces, X, be a real normed linear space; k € {0} U
NuU{o}; D, C X, be nonempty and open, D, C X, be nonempty open and convex, D, C X, be nonempty and open, and
D, € D, x D, be nonempty; f,, h,, f,. g, and h, be mappings of D, X D, x D, into X,, B (W, X, ), X,, B (U,X,), and
B (W, X, ), respectively; f, and h, be C; and all of their partial derivatives of kth order are further continuously differentiable
withrespectto x, € D,; f,, g, and h, be Cy., g,(x,. X4, x4) € B (U, X, ) be bijective, V(x,, X,, x,) € D,XxD,xDy,1, : D - R
be continuous,y € R, V, : D, > Rbe ., : D, > D, be Cpyy, ¢ 0 D, XD, XDy - X, beC, Z 1 D,Xx D, —> S, .
beaC; ,and R : D)X D,xD; - S ; beaC,. ¢, R, and Z are design functions. Assume that Z satisfies the following two
conditions.

(1) Z(x,,x,) € S, (x4, X,) € Dy X D,,.
0z
0x

LetV : D,x D, — Rbedefined by V(x,,x,) :=V,(x,)+ Z(x,, x,)(x, — a,(x,))(x, — a,(x,)), V(x,,x,) € D, x D,, which is
Ciir-Letog,0, € (0,1) C R and 03,04 € (0,0) C R with (1 4+ ¢,)0; < 1.
Assume that V, satisfies the Hamilton-Jacobi-Isaacs equation

T,
(i) 7,(x,x,) 1= 2Z(xX,, X,) + ( (xo,xa)> " (x, = ,(x,)) € B (X,, X" ) is bijective, ¥(x,, x,) € D, X D,

a

v, 1 9V, 2
{( 0 o ao(xg),xd)>>xo to [ T e 5, ) o+ LG =0 Vxux) €Dy (B26)

5For the convenience of the reader, this theorem has been reproduced as Theorem[2lin Appendix [C]
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Then, there exists a C; function « : D, X D, X D, — U given by (B1J), and a continuous function/ : D, X D, X D; = R,
such that V' satisfies the following Hamilton-Jacobi-Isaacs equation, with x := (x,, x,), V(x,, x;) € D|,Vx, € D,

v Jo(Xos X g5 Xg) >> 1 v hy(x,.x,x) |17
<< ax o X [fa(xo,xa,xd) + 8,(%, X 0o X (X0, X0y Xg) | /20, x, * 4y2 (X0 Xa)

X

0x ho(x, X0 x4) | lwe
+(x,, %, %x4) =0 B27)

where [(x,, x4, X4) 2 1,(Xg, Xg) + (DX, X0 X ), X = Ap(X) ), V(Xp, x4) € Dy, VX, € D,

v,
o (X0) = '93633 Jo(X00 X0 X40) = 92 » fa(Xo0s Xa0» Xa0) =
O s @ (Xg0) = X0, ANd P(X 50, X0, Xg9) = oy, then a (X, X 40, Xg) = .-

If, in addition, there exists (x,, X9, X40) € D,XD,XD,, such that

Proof. First, we will apply Lemmal[8]to show that the assumptions of this lemma implies the assumptions of Lemmal6l To apply
Lemmal8] we make the following substitutions:
X,=»X,X;, - X;, WoW, D, > D, x,—x, D;y - Dy, x; > x4, f,(x,,0,(x,),x5) = f(x,x;)
ho(xmao(xg)?xd) = g(x9xd)’ lo - 17 Dl = Dl’ Yy =0, I/g = V’ - (Im)

and choose D, to be some subset of W satisfying the condition of Lemmal§] Then, the derivative of V,(x,()) along a solution
of the dynamics (B21)) can be written as (B9).

By Lemmal@l there exists a C, function « satisfying (BIT). We will again apply Lemma[8]to show the desired result (B27).
Toward that end, make the following substitutions:

X, xX,-X, X, - Xy, W—>W, D, xD, - D, (x,,x,) > x, D; - Dy, x; = x4, D, > D,
[o(Xgs X5 X,) ] S fGoxy), [ho(xm Xgs X)

Ja(Xos Xy Xg) + 84(Xg: X4y Xg)a(X s X, Xg) ho(Xps X4 X4)
w-w,o—o,y—y V-V, (B - (B23), {(x,x,x,) € D,XD, XDy | (x,,x,) € Dy, x, € D,} = D,

Then, V satisfies (B27).
With a defined by (BI3), by Lemmal@l we have that a(x g, X, X49) = 9¢, under the additional assumption on (x ,, X ;0 X z0)-
This completes the proof of the lemma. |

- g(x9 xd)» l(x09 xa» xd) - l('x9 xd)

C CITED RESULTS OF [21]

Proposition 7. Let X be a real normed linear space. Then,
(1) S_x = =S,y and S,y = =Spaxs
(ii) S,y and S_ are open sets in Bg, (X, R) = Sy;
(i) Spqo and S,qoc are closed convex cones in Sy;
(iv) S,x € S;sdx and S_ € S° ..
Proposition 8. Let X be a normed linear space over the field K, S, T C X, and @« € K. Then, the following statements hold.
() aS = as.
(i) If @ # 0, then aS = aS.
(iii) If @ # 0, then (a.S)° = aS°.
(iv) S+TCS+T.
V) S°+T°C(S+T).
Proposition 9. Let X be a normed linear space, x, € X, S C X, and P = x, + S. Then, P= Xy + S and P° = Xo + S°.

Theorem 2 (Riesz-Fréchet). Let X be a Hilbert space over K. Then, the following statements hold.
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(i) Yf € X*, there exists a unique y, € X such that f(x) = (x,yy), Vx € X, and || f ||+ = ||y0 ”x Therefore, we may
define a mapping @ : X* — X by ®(f) = y,.

(i) Vy € X, define g : X - Kby g(x) = (x,y), Vx € X, then g € X*.

(iii) The mapping @ is bijective, uniformly continuous, norm preserving, and conjugate linear (thatis ®(a f+ 6 f,) = a®(f))+
PO(f2).Vf1, f, € X*, Va, f € K).

(iv) If K = R, then @ is a isometrical isomorphism between X* and X.

v) fK =C,let ¢ : X - X** be the natural mapping as defined in Remark 7.88 of [21]], then ¢ is surjective and X is
reflexive.

(vi) If K = C, then X(* with the inner product (-, - )., defined by ( f, g ). 1= (P(g), P(f)), Vf.g € X, is a Hilbert space,
and it is reflexive.

Henceforth, we will denote ®;,,(x) =: x*, Vx € X. Furthermore, the following statement hold.

(vil) When K =C, let @, : X** = X — X* be the mapping of ® if X is replaced by X*. Then, ®, = ®, . This leads to the
identity (x*)* = x, Vx € X.

(viii) If X is separable, then X* is separable.

Proposition 10. Let X be a finite-dimensional normed linear space over the field K. K C X is compact if, and only if, K is
closed and bounded.

Proposition 11. Let X, Y, and Z be normed linear spaces over K, D, € X, D, CY, f : D, - D,, 8 : D, - Z,x, € D, and
Yo = f(xy) € D,. Then, the following statements hold.

(i) Assume that f is C; at x, and g is C, at y,, for some k € NU { o0 }. Then, h := gof is C; at x,,.
(i) Let k € N. Assume that f is k-times differentiable and g is k-times differentiable. Then, 4 is k-times differentiable.

Theorem 3. Let f : DX Y — B(Z, W), where D C X, X is a normed linear space over K, Y is a compact metric space, Z is
a normed linear space over IK, W is a Banach space over K, and J := (J, B, ) be a finite Z-valued measure space. Assume
that the following conditions hold.

(i) Vxo € D, we have span (Ap (xy)) = X.

(i) Vx, € D, 36, € R, such that the set (D N By (xo» 6x0)) — X i a conic segment.
(iii) % :DXxY — B(X,B(Z,W))exists, f and % are continuous.
(iv) w : J — Y is B-measurable.

Define F : D - Wby F(x) := / ; f(x,w®)du®) € W, Vx € D. Then, F is continuously Fréchet differentiable and
DFx) = [, (L w))™ du() € B (X, W), Vx € D.

Proposition 12. Let X := (X, B, u) be a measure space, Y be a Banach space over K, W be a separable subspace of Y, Z be a
Banach space over K, f; : X — W be absolutely integrable over &, i = 1, 2. Then, the following statements hold.

(i) f;isintegrable over X and [, f;du€Y,i=1,2.

(i) f, + f, is absolutely integrable over X and /X(fl + f)du = /x frdu+ /x fHduey.
(iii) YA € B(Y,2), Af, is absolutely integrable over X and [, (Af)du= A [, f;du € Z.
(iv) Ve € K, ¢ is absolutely integrable over X and /[, (cf)du=c [, fidu €Y.

(v) VH € B, f| is absolutely integrable over H and [, (f\xy x)du = [;; f1|y duy € Y, where H := (H, By, piy) is
the measure subspace of X as defined in Proposition 11.13 of [21]. We will henceforth denote f u [i | y Qug by / y J1du.
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i) If f; = f,ae.in X then [, fidu= [, frdu €Y.
(vii) V pairwise disjoint ( E; )i:l CB Y, /E fidu= /U{'il g f1du €.
(viii) 0 < ”/x fi dy” < /X Pof,du < +co.
(ix) If Y admits a positive cone P and f| = frae. in X, then [, f1du = [y fodu.

Proposition 13. Let X := (X, O) be a separable topological space, Y be a Banach space, and f/ : X — ' be continuous. Then,
W :=span (f(X)) C Y is a separable normed linear subspace of Y, and W C Y is a separable Banach subspace of Y.

Theorem 4. Let I :=[a,b] C Rwitha,be Randa < b, :=((1,]-]|), B, u) be the finite complete metric measure subspace
of R, Y be a Banach space over K, and F : I — Y be C,;. (Note that, when K = C, I is viewed as a subset of C in calculations
of FM.) Then, F : T — Y is absolutely integrable over | and F(b) — F(a) = [, FO()dr = [” FO dpy.
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