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Abstract: In this paper, we have obtained the extended zero-dynamics canonical form for a class
of square MIMO LTI systems comprised of multiple square MIMO LTI subsystems in parallel
interconnection satisfying an interconnection property. We assume that each subsystem has
already been analyzed and extended to admit uniform vector relative degree (and has uniform
observability indices), and thus is suitable for the design of robust adaptive controllers. We
prescribe an interconnection property under which the composite system (without any further
modification or extension) admits the extended zero-dynamics canonical form even though it
does not have uniform vector relative degree. This will allow a centralized robust adaptive
controller design for the composite square MIMO LTI system if the composite system can be
shown to be minimum phase.
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1. INTRODUCTION

The minimum phase concept for linear systems is crucial
for the generalization of robust adaptive control system
design for finite-dimensional continuous-time SISO LTI
systems to that for finite-dimensional continuous-time
MIMO LTI systems (see Pan and Başar (2000, 2018);
Başar and Pan (2020); Pan and Başar (2021)). In robust
adaptive control for SISO systems (Pan and Başar, 2000)
it has been observed that key canonical forms for the
underlying system are the observer canonical form and the
extended zero-dynamics canonical form. For square MIMO
LTI systems, the zero-dynamics canonical form exists if
there exists a vector relative degree for the system. This
zero-dynamic canonical form then reveals the extended
zero dynamics for the system. However, the extended zero-
dynamics canonical form exists for general square MIMO
LTI systems under a more restrictive assumption: the
system must admit uniform vector relative degree (Başar
and Pan, 2020). This means that one must extend the
square MIMO LTI system to admit uniform vector relative
degree before attempting to design a robust adaptive
controller. These extra steps of extension lead to a larger
system order and therefore a more complicated adaptive
controller, and it does not allow for an easy expansion of
the system when additional subsystems are incorporated
into the composite system.

In this paper, we have obtained the extended zero-
dynamics canonical form for a class of square MIMO LTI
systems that is comprised of multiple square MIMO LTI
subsystems in parallel interconnection satisfying an inter-

connection property. We assume that each subsystem has
already been analyzed and extended to admit uniform vec-
tor relative degree (and has uniform observability indices).
We have multiple such subsystems parallel-interconnected
to form a composite system, where the composite system
admits vector relative degree but not uniform vector rela-
tive degree. We prescribe an interconnection property, un-
der which the composite system (without any further mod-
ification or extension) admits the extended zero-dynamics
canonical form even though it does not have uniform vector
relative degree. Thus, the composite system would be in
a form suitable for robust adaptive control design with
nonuniform vector relative degree if it is further minimum
phase according to Başar and Pan (2020). The intercon-
nection property we prescribe is that for each subsystem
i, the connections from subsystem j, j 6= i, satisfy the
properties that the relative degree from each component of
yj to each component of yi is greater than max {0, ri−rj },
where ri and rj are the uniform vector relative degrees
for the ith subsystem and the jth subsystem, respectively,
and the relative degree from each component of uj to
each component of yi is greater than max {ri, rj }. Thus,
when a number of subsystems are to be incorporated into a
robust adaptive control system, we just need to make sure
that these subsystems are themselves with uniform vector
relative degree (and have uniform observability indices),
and the interconnections of these subsystems and those of
the original system are compatible, i. e., they satisfy the
interconnection property. Then, the (centralized) robust
adaptive controller can be redesigned and applied to the
larger system without requiring any changes in the subsys-



tems if the composite system is minimum phase according
to Başar and Pan (2020).

The balance of the paper is as follows. In the next
section, we introduce the notations used in the paper. In
Section 3, we introduce the definition of the extended zero
dynamics canonical form of a class of square MIMO LTI
systems which is the composite system of multiple square
MIMO LTI systems in parallel interconnection further
satisfying the interconnection property. The availability of
the extended zero dyanmics canonical form for this class
of systems then leads to the bounding result that is stated
in Section 4, with the composite system serving as the
reference system. The paper ends with some concluding
remarks in Section 5.

2. NOTATIONS

We let IR denote the real line; IR+ := (0,∞) ⊂ IR;
IRe := IR ∪ {−∞} ∪ {+∞}; IN be the set of natural
numbers; Z+ := IN ∪ {0}; and C be the set of complex
numbers. Unless otherwise specified, all signals, constants,
and matrices are real. For a function f , we say that it
belongs to C if it is continuous; we say that it belongs to
Ck if it is k-times continuously differentiable (Fréchet dif-
ferentiability), which is equivalent to all partial derivatives
up to the kth order being continuous when the domain
of f is open, k ∈ IN ∪ {∞}. We say that a function is
L∞ if it is bounded. For any matrix A, A′ denotes its
transpose. For any vector z ∈ IRn, where n ∈ Z+, |z|
denotes the Euclidean norm

√
z′z. For n ∈ Z+, In denotes

the n × n-dimensional identity matrix. For n ∈ Z+ and
n×n-dimensional matrix A, we set A0 = In. For any matrix
M , ‖M‖p,p denotes its p-induced norm, 1 ≤ p ≤ ∞. For any
waveform u[0,tf ) ∈ C([0, tf ), IRp), where tf ∈ (0,∞] ⊂ IRe

and p ∈ Z+, ‖u[0,tf )‖∞ = supt∈[0,tf ) |u(t)|. For any
m,n ∈ Z+, 0m×n denotes the m × n-dimensional matrix
whose elements are all zeros. We will denote constants or
matrices of no specific interest or relevance to the analysis
by ⋆. We will denote m × n-dimensional matrices of no
specific interest or relevance to the analysis by ⋆m×n.

3. THE EXTENDED ZERO DYNAMICS CANONICAL
FORM

In this section, we first recall the definition of the extended
zero dynamics for a MIMO LTI system (Başar and Pan
(2020)).

Consider a general MIMO LTI system (not necessarily
square)

ẋ=Ax+ Bu + Dw; x(0) = x0 ∈ D0 (1a)

y = Cx+ Fu+ Ew (1b)

where x ∈ IRn is the state, n ∈ Z+; u ∈ IRp is the control
input, p ∈ Z+; y ∈ IRm is the output, m ∈ Z+; w ∈ IRq

is the disturbance input, q ∈ Z+; x0 ∈ D0, D0 ⊆ IRn is
a subspace, w[0,∞) ∈ Wd of class Bq, A, B, D, C , F , and
E are constant matrices of appropriate dimensions. The
extended zero dynamics of (1) is defined by the maximal
solution K ∈ IRs×n, Az ∈ IRs×s, Az1 ∈ IRs×m to the
following matrix equations.

KA=AzK + Az1C (2a)

Az1F =KB (2b)

where K is of full row rank such that s is maximal. Then,
defining xz := Kx, it evolves according to

ẋz =Azxz + Az1y + (KD − Az1E )w; (3)

xz(0) = Kx0 ∈ K (D0)

This is said to be the extended zero dynamics of (1). (Note
that s = 0 is also a possible solution, which corresponding
to the case when the extended zero dynamics is absent)

Then, we recall the canonical form that reveals the ex-
tended zero dynamics for square MIMO LTI systems with
vector relative degree (See Isidori (1995) or Başar and Pan
(2020)).

Lemma 1. Consider a square MIMO LTI system

ẋ= Ax+ Bu+ Dw; x(0) = x0 ∈ D0 (4a)

y= Cx+ Fu+ Ew (4b)

where x ∈ IRn is the state, n ∈ Z+; u ∈ IRm is the
control input, m ∈ Z+; y ∈ IRm is the output; w ∈ IRq

is the disturbance input, q ∈ Z+; x0 ∈ D0, D0 ⊆ IRn is a
subspace, w[0,∞) ∈ Wd of class Bq (Pan and Başar, 2018),
A, B, D, C , F , and E are constant matrices of appropriate
dimensions.

Let the system admit vector relative degree r1, . . . , rm ∈
{0, . . . , n} from u to y, that is, i = 1, . . . ,m,

Fi,: = Ci,:B = · · · = Ci,:A
ri−2B = 01×m

where Fi,: and Ci,: are the ith row vectors of the matrices
F and C , respectively, and






C1,:A
r1−1B
...

Cm,:A
rm−1B




 =: B0

is an invertible matrix (for those i = 1, . . . ,m with ri = 0,
the corresponding row in B0 is replaced by Fi,:). The
matrix B0 is said to be the high frequency gain matrix.
Then, there exists an invertible matrix To such that, in

x̄ := T−1
o x = [x′

z x1,1 . . .x1,r1 . . .xm,1 . . .xm,rm ]
′

coordinates, the system (4) admits the representation

ẋz = Azxz +
m∑

i=1

Az1,iyi + Dzw (5a)

ẋi,j = xi,j+1 + Di,jw; (5b)

1 ≤ i ≤ m with ri > 0, 1 ≤ j < ri

ẋi,ri = Aix̄+ Ci,:A
ri−1Bu+ Di,riw; (5c)

1 ≤ i ≤ m with ri > 0

yi = xi,1 + Ei,:w; 1 ≤ i ≤ m with ri > 0 (5d)

yi = C̄i,:x̄+ Fi,:u+ Ei,:w; 1 ≤ i ≤ m with ri = 0 (5e)

where xz ∈ IRn−
∑

m

i=1
ri ; xi,j ∈ IR, 1 ≤ i ≤ m with ri > 0,

1 ≤ j ≤ ri. (5) is called the zero dynamics canonical form
of system (4). (Note that here (5) is not the extended zero
dynamics canonical form.) The dynamics (5a) is said to be
the extended zero dynamics of system (4).

When the vector relative degree (r1, . . . , rm) is uniform,
then Başar and Pan (2020) further defines the extended



zero dynamics canonical form for (4) in four possible cases
depending on the value r = r1 = · · · = rm and n.

In this paper, we consider a special class of square MIMO
LTI systems formed as the parallel interconnected square
MIMO LTI systems as depicted in Figure 1. (For brevity,
the figure only includes two interconnected subsystems,
but we consider here an arbitrary number, p, of such
interconnected subsystems.)

S 2

S 1

z2

y1

z1

y2

w2

w1

u1

u2

Fig. 1. Two parallel interconnected subsystems.

We assume that

Assumption 1. Each subsystem Si, i = 1, . . . , p, is a finite-
dimensional continuous-time square MIMO LTI system
of order ni ≥ 0 and with uniform vector relative degree
0 ≤ ri ≤ ni

mi
from ui to yi, where ui and yi are mi ∈ IN

dimensional.

We assume the following interconnection properties:

Assumption 2. (Interconnection Property). Fix any i =
1, . . . , p, for subsystem Si, the relative degree from each
component of yj , j 6= i to each component of yi is greater
than 0 ∨ (ri − rj); and the relative degree from each
component of uj , j 6= i, to each component of yi is greater
than ri ∨ rj , j = 1, . . . , p.

It is straightforward to verify that the composite system S
with input u := (u1, . . . ,up) and output y := (y1, . . . ,yp)
admits vector relative degree (r1, . . . , r1

︸ ︷︷ ︸

m1−times

, . . . , rp, . . . , rp
︸ ︷︷ ︸

mp−times

).

Thus, by Lemma 1, for the composite system S, we have
the following zero dynamics canonical form:

ẋz =Azxz +

p
∑

i=1

Az1,iyi + Dzw (6a)

ẋi,j = xi,j+1 + Di,jw; (6b)

1 ≤ i ≤ p with ri > 0, 1 ≤ j < ri

ẋi,ri =Aix+ B0,iui + Di,riw; (6c)

1 ≤ i ≤ p with ri > 0

yi = xi,1 + Eiw; 1 ≤ i ≤ p with ri > 0 (6d)

yi = Cix+ Fiui + Eiw; 1 ≤ i ≤ p with ri = 0 (6e)

where xz ∈ IR
∑

p

i=1
ni−

∑
p

i=1
miri ; yi ∈ IRmi , i =

1, . . . , p; xi,j ∈ IRmi , i = 1, . . . , p with ri > 0, j =
1, . . . , ri, B0,i is invertible, i = 1, . . . , p with ri > 0;

and Fi is invertible, i = 1, . . . , p with ri = 0; x =
(xz,x1,1, . . . ,x1,r1 , . . . ,xp,1, . . . ,xp,rp). (6) is the zero dy-
namics canonical form of system S. (Note that here (6)
is not the extended zero dynamics canonical form.) The
dynamics (6a) is the extended zero dynamics of system S.
Without loss of generality, assume that

Assumption 3. The uniform vector relative degrees are
ordered in the nondecreasing fashion: r1 ≤ r2 ≤ · · · ≤ rp.

By Assumption 2, we have Ci, i = 1, . . . , p with ri =
0, has all zero elements multiplying xj,1, . . . ,xj,rj , j =
1, . . . , p with rj > 0. Therefore, Ci has nonzero elements
only multiplying xz. By Assumption 2, we have Ai, i =
1, . . . , p with ri > 0, has all zero elements multiplying
xj,ri+1, . . . ,xj,rj , j = 1, . . . , p with rj > ri.

Now, consider the dynamics of

(x1,1, . . . ,x1,r1 , . . . ,xp,1, . . . ,xp,rp)

It has the following structure:

˙̄xi,j = x̄i,j+1 + D̄i,jw; (7a)

i = 1, . . . , p̄, j = 1, . . . , r̄i − 1

˙̄xi,r̄i = Āizxz +

p̄
∑

j=1

r̄j∧r̄i∑

l=1

Āi,j,lx̄j,l + B̄0,iūi + D̄i,r̄iw; (7b)

ȳi = x̄i,1 + Ēiw; i = 1, . . . , p̄ (7c)

where p̄ is equal to the number of distinct ri, i = 1, . . . , p,
that are not zeros, which forms the set { r̄1, . . . , r̄p̄ };
l1, . . . , lp̄ is defined by rl1 = 0 < r̄1 := rl1+1 = · · · =
rl2 < r̄2 := rl2+1 = · · · = rl3 < · · · < r̄p̄ :=
rlp̄+1 = · · · = rp, lp̄+1 = p; (for notational consis-
tency, we define r0 := 0;) x̄i,j := (xli+1,j , . . . ,xli+1,j),
i = 1, . . . , p̄, j = 1, . . . , r̄i, ūi := (uli+1, . . . ,uli+1

),

and B̄0,i := block diagonal
(
B0,li+1, . . . ,B0,li+1

)
, ȳi :=

(yli+1, . . . ,yli+1
), i = 1, . . . , p̄.

For the system (7), xz and w are considered inputs into
the system. By Lemma 1 of Başar and Pan (2019), this
system (7) is observable with observability indices

(r̄1, . . . , r̄1
︸ ︷︷ ︸

m̄1−times

, . . . , r̄p̄, . . . , r̄p̄
︸ ︷︷ ︸

m̄p̄−times

)

where m̄i :=
∑li+1

j=li+1 mj , i = 1, . . . , p̄. As we had

done in Lemma 2 of Başar and Pan (2020), we will
transform the system (7) into observer canonical form.
By the proof of Lemma 1 of Başar and Pan (2019), we
note that the noninterweaved version of the matrix Q =
I∑p̄

i=1
r̄im̄i

. Thus, we may form the matrix S as in the proof

of Lemma 1 of Başar and Pan (2019) (noninterweaved
version):

S =






M̄11 · · · M̄1p̄

...
. . .

...
M̄p̄1 · · · M̄p̄p̄






where M̄ii, i = 1, . . . , p̄, is a r̄im̄i × r̄im̄i-dimensional
matrix of the form:

M̄ii =








Im̄i
0 · · · 0

⋆ Im̄i

. . .
...

...
. . .

. . . 0
⋆ · · · ⋆ Im̄i










and M̄ij , i = 1, . . . , p̄− 1, j = i+ 1, . . . , p̄, is a r̄im̄i×r̄jm̄j-
dimensional matrix of the form:

M̄ij =







0m̄i×m̄j
· · · · · · · · · · · · 0m̄i×m̄j

⋆m̄i×m̄j
0m̄i×m̄j

· · · · · · · · · 0m̄i×m̄j

...
. . .

. . .
...

...
...

⋆m̄i×m̄j
· · · ⋆m̄i×m̄j

0m̄i×m̄j
· · · 0m̄i×m̄j







and M̄ij , i = 2, . . . , p̄, j = 1, . . . , i− 1, is a r̄im̄i × r̄jm̄j-
dimensional matrix of the form:

M̄ij =















0m̄i×m̄j
0m̄i×m̄j

· · · 0m̄i×m̄j

...
...

...
...

0m̄i×m̄j

...
...

...

⋆m̄i×m̄j
0m̄i×m̄j

...
...

...
. . .

. . .
...

⋆m̄i×m̄j
· · · ⋆m̄i×m̄j

0m̄i×m̄j















We have the following result.

Lemma 2. The matrix S is invertible and S−1 admits the
same structure as S .

Proof. We will show that S is always invertible and
S−1 admits the same structure as S using mathematical
induction on p̄.

1◦ Consider the case p̄ = 1. The result is obvious.

2◦ Assume that the result holds when p̄ = k ∈ IN.

3◦ Consider the case when p̄ = k+1 ∈ {2, 3, . . .}. Denote

S̄ :=






M̄11 · · · M̄1k

...
. . .

...
M̄k1 · · · M̄kk




 and then








S̄

M̄1p̄

...
M̄p̄−1,p̄

M̄p̄1 · · · M̄p̄,p̄−1 M̄p̄p̄








= S . By 2◦, S̄ is invertible and S̄−1 admits the same form
as S̄ . By 1◦, M̄−1

p̄p̄ exists and admits the same form as M̄p̄p̄.

By Matrix Inversion Lemma, we have S−1 =

[
T

−1
11 T12

T21 T
−1
22

]

when S̄ , M̄p̄p̄ are invertible, and T11 and T22 are invertible,

where T11 = S̄ −






M̄1p̄

...
M̄p̄−1,p̄




 M̄

−1
p̄p̄

[
M̄p̄1 · · · M̄p̄,p̄−1

]
, T21 =

−M̄
−1
p̄p̄

[
M̄p̄1 · · · M̄p̄,p̄−1

]
T

−1
11 , T22 = −

[
M̄p̄1 · · · M̄p̄,p̄−1

]
·

S̄−1






M̄1p̄

...
M̄p̄−1,p̄




 + M̄p̄p̄, and T12 = −S̄−1






M̄1p̄

...
M̄p̄−1,p̄




T

−1
22 .

Now, based on the structures preceding the lemma, we
can easily show that T11 admits the same structure as
S̄ and therefore invertible, by 2◦. Then, T−1

11 admits the
same structure as S̄−1, which is the same structure as
S̄ , by 2◦. We can also conclude that T22 admits the
same structure as M̄p̄p̄. By 1◦, T−1

22 exists and admits the
same structure as M̄p̄p̄. Furthermore, T12 admits the same

structure as






M̄1p̄

...
M̄p̄−1,p̄




 and T21 admits the same structure

as
[
M̄p̄1 · · · M̄p̄,p̄−1

]
. Thus, S−1 admits the same structure

as S .

This completes the induction process and therefore the
proof of the lemma. 2

By Lemma 1 of Başar and Pan (2019), in the coordinates
of

(x̌1,1, . . . , x̌1,r̄1 , . . . , x̌p̄,1, . . . x̌p̄,r̄p̄)

:= S−1(x̄1,1, . . . , x̄1,r̄1 , . . . , x̄p̄,1, . . . x̄p̄,r̄p̄)

the system (7) admits the observer canonical form repre-
sentation:

˙̌xi,j =

p̄
∑

l=1

Ǎi,j,lx̌l,1 + x̌i,j+1 + Ďi,jw; (8a)

i = 1, . . . , p̄, j = 1, . . . , r̄i − 1

˙̌xi,r̄i = Āizxz +

p̄
∑

l=1

Ǎi,r̄i,lx̌l,1 + B̄0,iūi + Ďi,r̄iw; (8b)

ȳi = x̌i,1 + Ēiw; i = 1, . . . , p̄ (8c)

where x̌i,j is of m̄i-dimensional, i = 1, . . . , p̄, j = 1, . . . , r̄i,

Ǎi,j,l = 0m̄i×m̄l
if r̄i− r̄l−j ≥ 0, i = 1, . . . , p̄, j = 1, . . . , r̄i,

l = 1, . . . , p̄, and we have made use of the structure of S
and S−1 in the above formulas.

Summarizing the preceding, we state the following result.

Proposition 3. Consider the finite-dimensional continuous-
time square MIMO LTI system which is composed of
p ∈ IN finite-dimensional continuous-time square MIMO
LTI systems in parallel configuration as illustrated in Fig-
ure 1 (which is for the special case p = 2). We assume
that Assumptions 1, 2, and 3 hold for the interconnected
systems. Then, the composite system S admits state space
representation (6) by Lemma 1. Furthermore, the sys-
tem admits the following extended zero dynamic canonical
form:

ẋz =Azxz +

l1∑

i=1

Az1,iyi +

p̄
∑

i=1

Ǎz1,iȳi + Dzw (9a)

˙̌xi,j =

p̄
∑

l=1

Ǎi,j,lx̌l,1 + x̌i,j+1 + Ďi,jw; (9b)

i = 1, . . . , p̄, j = 1, . . . , r̄i − 1

˙̌xi,r̄i = Āizxz +

p̄
∑

l=1

Ǎi,r̄i,lx̌l,1 + B̄0,iūi + Ďi,r̄iw; (9c)

ȳi = x̌i,1 + Ēiw; i = 1, . . . , p̄ (9d)

yi = Cizxz + Fiui + Eiw; 1 ≤ i ≤ l1 (9e)

where p̄ is equal to the number of distinct ri, i = 1, . . . , p,
that are not zeros, which forms the set { r̄1, . . . , r̄p̄ };
l1, . . . , lp̄+1 is defined by r0 = · · · = rl1 = 0 < r̄1 :=
rl1+1 = · · · = rl2 < r̄2 := rl2+1 = · · · = rl3 < · · · <
r̄p̄ := rlp̄+1 = · · · = rp, lp̄+1 := p; (for notational
consistency, we define r0 := 0;) ūi := (uli+1, . . . ,uli+1

),

and B̄0,i := block diagonal
(
B0,li+1, . . . ,B0,li+1

)
, which

is invertible; ȳi := (yli+1, . . . ,yli+1
), i = 1, . . . , p̄; xz ∈

IR
∑

p

i=1
ni−

∑
p

i=1
miri ; x̌i,j ∈ IRm̄i = IR

∑
li+1

k=li+1
mi

, i =
1, . . . , p̄, j = 1, . . . , r̄i; Fi is invertible, i = 1, . . . , l1; and
Ǎi,j,l = 0m̄i×m̄l

if r̄i− r̄l−j ≥ 0, i = 1, . . . , p̄, j = 1, . . . , r̄i,
l = 1, . . . , p̄,.



4. FURTHER RESULTS

Based on the extended zero-dynamics canonical form (9),
we observe that the system outputs are just a chain of
integrators from the corresponding control input, which
are perturbed by bounded signals, if the system outputs
are bounded and the composite system is minimum phase
according to Başar and Pan (2020). This observation is
made precise by the following theorem.

Theorem 4. Consider the finite-dimensional continuous-
time square MIMO LTI system which is composed of
p ∈ IN finite-dimensional continuous-time square MIMO
LTI systems in parallel configuration as illustrated in Fig-
ure 1 (which is for the special case p = 2). We assume
that Assumptions 1, 2, and 3 hold for the interconnected
systems, and that the composite system S is minimum

phase with respect to D0 and Wd, where D0 ⊆ IR
∑

p

i=1
ni

is a subspace and Wd is of class Bq, and q ∈ Z+ is the di-
mension of the exogeneous disturbance input w. Then, the
composite system S admits extended zero dynamic canoni-
cal form representation (9) by Proposition 3. Assume that
the entire output of composite system y := (y1, . . . ,yp)
and the disturbance input w are bounded on some time
interval [0, tf ), where tf ∈ IR+, the initial condition of
the composite system is bounded and in the subspace D0,
the disturbance waveform is in Wd, and ∃i0 ∈ {1, . . . , p̄}
and ∃k0 ∈ {0, . . . , r̄i0 − 1}, such that x̌i0,1, . . . x̌i0,1+k0

are
bounded on [0, tf). Then, any stably filtered signal of ūi0 :

η̇= Fη + G ūi0 (10a)

ξ=Hη (10b)

where the system (10) is finite-dimensional and LTI and
F is Hurwitz, and each component of the output ξ has
relative degree with respect to each component of the input
ūi0 to be greater than or equal to r̄i0 − k0, then the signal
ξ is bounded on the interval [0, tf ).

Proof. Under the assumption that y and w are bounded
on [0, tf ), and the composite system S is minimum phase
according to Başar and Pan (2020), we have that the state
of the extended zero-dynamics xz is bounded on [0, tf).
Then, the result follows directly from Lemma 2 of Pan
and Başar (2019). 2

In the application of the above theorem, the composite
system S is referred to as the reference system.

5. CONCLUSIONS

In this paper, we have obtained the extended zero-
dynamics canonical form for a class of square MIMO
LTI systems comprised of multiple square MIMO LTI
subsystems in parallel interconnection satisfying the in-
terconnection property. Under the assumption that each
subsystem has already been analyzed and extended to
admit uniform vector relative degree (and has uniform
observability indices), we have considered multiple such
subsystems, parallel-interconnected to form a composite
system which admits vector relative degree but not uni-
form vector relative degree. We have prescribed an inter-
connection property under which the composite system
(without any further modification or extension) admits
the extended zero-dynamics canonical form even though

it does not have uniform vector relative degree. Thus, the
composite system is in a form suitable for robust adaptive
control design with nonuniform vector relative degree if
it is further minimum phase according to Başar and Pan
(2020). The interconnection property we have prescribed
is one where for each subsystem i, the connections from
subsystem j, j 6= i, satisfy the properties that the relative
degree from each component of yj to each component of yi

is greater than max {0, ri−rj }, where ri and rj are the uni-
form vector relative degrees for the ith subsystem and the
jth subsystem, respectively, and the relative degree from
each component of uj to each component of yi is greater
than max {ri, rj }. Thus, when a number of subsystems are
to be incorporated into a robust adaptive control system,
we just need to make sure that these subsystems are
themselves with uniform vector relative degree (and have
uniform observability indices), and the interconnections
of these subsystems and those of the original system are
compatible, i. e., they satisfy the interconnection property.
Then, the (centralized) robust adaptive controller can be
redesigned and applied to the larger system without re-
quiring any changes in the subsystems if the composite
system is minimum phase according to Başar and Pan
(2020).

The remaining question along this line of research is
what kind of interconnection property is required such
that the composite system will automatically be minimum
phase given that the subsystems are minimum phase. This
question is currently under investigation.
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Pan, Z. and Başar, T. (2019). Properties of
the generalized minimum phase concept for SISO
LTI systems with additive disturbances. URL
https://preview.tinyurl.com/sah5vy2. Internal re-
port.


